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Abstract

The present paper addresses developing the Dynamic Stiffness Method (DSM) for natural frequency
analysis of functionally graded beam with piezoelectric patch based on the Timoshenko beam theory
and power law of material grading. Governing equations and general solution of free vibration are
conducted for the beam element with piezoelectric layer that is modelled as a homogeneous
Timoshenko beam. The obtained solution allows establishing dynamic stiffness matrix for modal
analysis of FGM beam with bonded piezoelectric distributed sensors/actuators. Effect of thickness
and position of the smart sensors/actuators and material parameters on natural frequencies is studied
with the aim for dynamic testing and health monitoring of FGM structures. The theoretical
developments are validated and illustrated by numerical examples.

1. Introduction

Due to increasingly employed functionally graded materials in high-tech industries, studying behavior of
structural components such as beams or plates made of that material under various loadings becomes vitally
essential. The most important achievements in modelling and analysis of the material and structures were
reported in the surveys given by Birman and Byrd [1] and Gupta and Talha [2]. Various problems in dynamic
analysis of functionally graded beams were studied in the widespread literature, for instance, in the works [3-7].
A large number of works is devoted also to study vibrations of the beams with localized damages such as cracks
[8—13]. Recently, some procedures were proposed by Yu and Chu [14]; Banerjee et al [ 15] and Khiem and Huyen
[16] to detect cracks in functionally graded beams with natural frequencies measured by the traditional
technique of modal testing. As well known, the traditional modal testing is restricted to use a limited number of
discrete sensors and actuators that are usually unable to gather sufficient amount of data for solving the problem
of damage detection in structural health monitoring. Therefore, using distributed sensors and actuators for
modal testing would be surely promising to enhance solution of the damage detection problem.

Tzou and Tseng [17] demonstrated the necessity in using distributed piezoelectric sensor/actuator for
dynamic measurement/control of distributed parameter systems such as flexible structures. The authors have
developed also the so-called piezoelectric finite element approach to free vibration of a plate with distributed
piezoelectric actuator on the top and sensor at the bottom. Lee and moon [ 18] developed a theory of distributed
sensor/actuator that can be adopted to measure/excite specific modes of plates and beams. Rao and Sunar [19]
accomplished a comprehensive survey on the use of piezoelectric materials for disturbance sensing and control
of flexible structures. Lee and Jiang [20] studied the electromechanical properties of a piezoelectric laminae that
can be used as distributed sensor/actuator for measurement/control of the distributed parameter systems.
Recent progress in structural health monitoring by the use of distributed piezoelectric transducers was reported
in [21, 22]. Particularly, Wang and Quek [23] showed that the buckling and flutter capacities of an elastic column
could be enhanced by using piezoelectric patches bonded to both sides of the column as actuators with an
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Figure 1. FGM beam element with piezoelectric layer.

applied voltage. Wang et al [24] revealed an effect of a piezoelectric patch bonded to abeam on natural frequency
of the beam and demonstrated an interesting fact that piezoelectric patch used as an actuator could restore the
healthy condition of a cracked beam. Mateescu et al [25] presented a method for crack detection in beam and
plate using piezoelectric sensors bonded on both sides of the structures.

Using piezoelectric material for sensing and controlling a structure behavior is essentially leading to analysis
of the structures with piezoelectric components [26, 27] such as beams or plates with layers or patches. Namely,
Yang and Lee [28] used the stepped beam model for modal analysis of Timoshenko beam with piezoelectric
patches symmetrically bonded onto both the top and bottom and demonstrated that stiffness and inertia of the
piezoelectric material, as well as shear deformation and rotary inertia of the base beam may make change in
natural frequencies of the coupled beam. The model of multistep beam was employed also by Maurini et al [29]
for modal analysis of classical beam with numerous pairs of piezoelectric patches using different techniques
including the so-called assumed modes method proposed by themselves. Wang and Quek [30] used the
sandwich beam model for modal analysis of a Euler—Bernoulli beam embedded with piezoelectric layers and
they found that natural frequency of the sandwich beam is function of stiffness and thickness of the piezoelectric
layers. Lee and Kim [31] first proposed to apply the spectral element method (SEM) for vibration analysis of also
Euler—Bernoulli beam bonded with a piezoelectric layer (two-layer beam model) and declared that the SEM may
provide reliable dynamic characteristics of the elastic-piezoelectric two-layer beams. Then, the SEM have been
developed for modelling and analysis of homogeneous [32] and composite [33] Timoshenko beams with
piezoelectric layers.

While the most of the aforementioned studies are concerned with the homogeneous beams, there is found in
the literature very few works devoted to functionally graded beams with piezoelectric patches except some
mentioned below. The stability of an FGM Timoshenko beam embedded by the top and bottom piezoelectric
layers/actuators has been investigated in [34] and it is found a significant effect of both the piezoelectric
actuators and FGM parameters on the critical buckling loads. Li et al [35] even proposed a model of functionally
graded piezoelectric beam for its vibration analysis and revealed the increase of natural frequency and decrease
of electric potential with increasing gradient index of the material. Recently, Bendine et al [36] studied the
problem for active vibration control of functionally graded beams with upper and lower surface-bonded
piezoelectric layers using the finite element method.

The present paper addresses developing the Dynamic Stiffness Method (DSM) for natural frequency analysis
of functionally graded Timoshenko beam with a bonded piezoelectric patch. The DSM is preferred to develop
herein because of the following reasons. First, DSM allows one to obtain response of a structure in arbitrarily
high-frequency range that is typical for piezoelectric material. Second, when a number of piezoelectric patches
are bonded to a uniform beam it becomes nonuniform one of stepwise varying cross section, for analysis of
which the DSM is most efficient. Thus, the subject of this study is to examine the effect of thickness and location
of the piezoelectric patch mutually with gradient index of the material on the beam’s natural frequencies in
different cases of boundary conditions. Theoretical development is validated and illustrated by numerical
results.

2. Governing equations

Consider an FGM beam of length L, cross sectional area A, = b X hy, (figure 1). Itis assumed that the material
properties of the beam vary along the thickness direction by the power law distribution as follows

R(z) = Ry + R — Re)(z/h + 0.5)%
—h/2<z< /2, (1)

where DR stands for Young’s, shear modulus and material density E, G, p; subscripts t and b denote the top and
bottom material respectively; n is power law exponent; zis ordinate of point along the beam height from the mid
plane. Assuming small deformation in the framework of Timoshenko beam theory, the constituting equations
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for the beam at section x are
u(x, z, t) = ug(x, t) — (z — ho)0(x, t);
W(.X, Z, t) = Wo(x, t))
ox = E(2)&x; T = G(2) Vaz
€ = 0uy/0x — (z — ho)00/0x; Yy = Owy/0x — 0, )
where u(x, z, t), w(x, z, t) are axial and transverse displacements in cross-section at x; 1 (x, t), wy(x, t)are
the displacements on the neutral plane and £ is rotation of the cross-section; &, 7,,, 0, T are deformation and
strain components; K is geometry correction factor; h is acknowledged as exact position of neutral plane
measured from the beam midplane. Based on the condition for neutral plane of the FGM beam, the actual
position of neutral axis is calculated as
hO = n(r, — l)h/Z(n +2)(n + 1) = Et/Eb- 3)

Using the constitutive equation (2) strain energy of the beam is calculated as

I, =/2) [ [ [+ mera)dv,
=/ [ [ [1E@e + kG@rL1av,

_ fLO Anul? — 2A12u:09/ +2A229/2+ dx, (4
+As3(wy — 0)
where comma denotes derivative with respect to spatial variable x and
Ay = f E(z)dA = bhE,p, (1., n);
A
A = f E(2)(z — ho)dA = bhEy, (1, 1);
A
Ay = f E(2)(z — ho)?dA = bWEypy(r., n);
A
Ay =k f G(2)dA = bhrGyep, (1, n);
A
o (x, 1) = (x +n) /(1 + n); p,(x, n)
=@2x+n)/2Q+n) —akx+mn)/(+ n)
o =p/py e =Ei/Ep; 13 =G/ Gos a = 1/2 4 ho/hy ®)
On the other hand, kinetic energy of the beam is
1=/ [ [ [p + wav
L . ,
- (1/2)f {Lnitd — 2o + D07 + Ly Ydx (©)
0
with
Ill = fA p(Z)dA = bhbpbwl(rpy ”);
Iy = fA p(2)(z — ho)dA = bk} p,py (1, 1);
L, = fA p(2)(z — ho)*dA = bhj p,p5(ry, 1). @
Let’s now consider the piezoelectric layer as a homogeneous Timoshenko beam element, so that constitutive
equations can be expressed as
uy (X, Z, 1) = upo(x, t) — 20,(x, t), wp(x, Z, t) = wyo(x, t)
Epx = u;;o - 29;’ T = Wz/ao — 6,
Opx = Cﬁspx — hi3D; Ty = CS%’VP; €= —h13€px + B§3D’ ®)

where Cf}, hy3, (3%, are elastic modulus, piezoelectric and dielectric constants respectively. € and D are electric
field and displacement of the piezoelectric layer.
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Figure 2. Nodal displacements and forces of a beam element.

Perfect bonding of the base beam with the piezoelectric layer is represented by the conditions

h
u(x, E, t) = up(x, ——p, t), W(x, E,)
2 2 2

_hp/za t))

Upo = Uy — 9h/2,h:hh+hp, WPOZWO,QZGP.

= Wp (x)
that yield
Therefore
Epx = Uy —
and

Z+ h/2)0, ~

Y = wy — b5

= (I/Z)fff(opxspx + 77 + €D)dV,

=a/2 [ [ [iches

=<h@{£L{

2
CHAP U

— 2hi3Depy + C{gﬁ, +

— ChA huyt'+
CHU, + Aph?/ )0 + CEA,(wy — 0)?

#5,D%1dv,

L
—1/2) fo {2h3 A, D(uf — h9'/2) — BLA,D?}dx;

1, = /2 [ [ [ o, +ip)av

pp PMO

l+(pp1p + ppAph2/4)0 + ,DPAPWOJ

4@[!

where A, = bhy; I, = bh; /12. Therefore, total strain and kinetic energies of the system are

II =1L, + 1I,

=a/mif

.12
Afjug” —

ppAphiig

2A5u/00" + A0+
AZy(wy — 0)?

dx,

—2h3A,D(ug — h'/2) + 5A,D?

L r*g2 —
T:TP+TP:(1/2)]O {

+1229 + I

where

2151106

Alﬂi = A + CﬁAp; Alt =Ap + CﬁAph/Z;

AD =An + ChU, + Aph?/4); Ay = KAz + CLAy;
I = I+ PpAps I=T+ ppAph/Z;

12*2 =1+ ppIp + ppAph2/4.

}dx’
1W0

©

(10)

an

(12)

(13)

(14a)
(14b)
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Figure 3. Model of FGM beam with piezoelectric patch.

Putting expressions (13) to the Hamilton’s principle

t
f §(T — Tydt = o,
h

one gets
(Thiig — Afiu) — (50 — AS0") + hi3A,D' = 0;
g — Afy(w) — 0) =0
(siio — Afyug) — () — AK0") + (Af(wg — 0) + hi3A,hD") /2 = 0;
hi3Ap(ug — h8'/2) — B5,A,D =0
and

[(Afiuy — AKO" + h3A,D)dugly = 0;
[(Afjug — A%0" + hi3A,hD/2)6015 = 05
[(Af(wh — 0)wols = 0.

(15a)

(15b)

The last equation in (154) allows one to find D = hy3(ug — h6’/2) /3%, so that remaining equations in (15) can

be written as
(Ilﬁﬁo - Blﬂi”(;/) - (Ifgé - Blﬂ;a”) = 0;
(Iiig — Blhug) — (1550 — BHO") + Afi(wy — 0) = 05
g — Afy(wg — 0") =0,

and

[(Biug — B0 buol; = 05
[(BJiug — B30)60)5 = 0;
[(Afi(wg — 0)wol; = 0,
where the constants B}, B/5, BJ; are
Bf‘i = Afli - Aphlza/ﬁga = An + EpAp,
B = Ay — Aphhi3/20% = A + EyAph/2,
B, = A3y — Aph*hi3 /4B% = Asy + CRI, + EpA,h?/4;
Ep = Cfl - h123/ﬁ§3~
Transferring equation (16) into the frequency domain, one gets
[AH{Z"(x, w)} + [BI{Z'(x, w)} + [CH{Z (x, w)} =0,
where vectors
Z = {U(x, w), O(x, w), W(x, w)}T
- f " o, 1), 0(x, 1), wolx, 1)} e—itdt,
Z'=dzZ/dx, Z" = d%z/dx?,

(16)

17)
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Table 1. Frequency parameter A\ = w(L?/h)/p,/E; of SS-beam for various thickness of intermediate piezoelectric patch in different

gradient index (n) and L;, /h;, = 10.

N T Khiem et al

Thickness ratio (hy, /hy)

N Reference [6] 0 0.1 0.2 0.3 0.5 0.8 1.0 Mode No
0.1 5.0001 4.9977 4.8389 4.7306 4.6613 4.6000 4.5877 4.5793 1
19.136 19.1228 18.9199 18.7562 18.6240 18.4157 18.1159 17.8641 2
40.385 40.3570 39.7208 39.3880 39.2974 39.6770 63.4179 39.1969 3
56.379 56.3731 53.5208 51.0267 48.8414 45.2184 88.3986 42.5163 4
66.608 66.5611 65.1948 64.2781 63.7096 63.2773 104.2558 63.5687 5
0.2 4.7348 4.7243 4.5925 45055 4.4532 4.4160 4.4234 4.4222 1
18.118 18.0772 17.9094 17.7774 17.6735 17.5129 17.2723 17.0590 2
38.240 38.1525 37.623 37.3645 37.3264 37.7672 39.2921 37.8191 3
53.361 53.5455 051.0074 48.7679 46.7881 43.4665 39.7020 40.5997 4
63.075 62.9317 61.7907 61.0465 60.6120 60.3645 60.6528 60.8573 5
0.5 4.2432 4.2086 4.1227 4.0725 4.0496 4.0539 4.0947 4.1054 1
16.235 16.1021 15.9932 15.9140 15.8568 15.7739 15.6287 15.4782 2
34.261 33.9801 33.6327 33.5033 33.5575 34.1035 35.6428 34.9610 3
48.044 48.0050 46.0115 44,2240 42.6177 39.8608 36.6288 36.8898 4
56.502 56.0479 55.2834 54.8306 54.6220 54.6816 55.2047 55.4950 5
1.0 3.8586 3.8004 3.7466 3.7223 3.7201 3.7532 3.8162 3.8347 1
14.755 14.5331 14.4646 14.4212 14.3951 14.3625 14.2788 14.1702 2
31.110 30.6491 30.4283 30.3897 30.5077 31.1190 32.6381 32.2887 3
43.242 43.1884 41.5954 40.1492 38.8330 36.5316 33.7576 33.8135 4
51.256 50.5213 50.0108 49.7536 71.7626 49.9431 50.5904 50.9232 5
2.0 3.551 3.4878 3.4560 3.4494 3.4612 3.5132 3.5905 3.6144 1
13.561 13.3229 13.2820 13.2624 13.2565 13.2560 13.2122 13.1318 2
28.544 28.0555 27.9209 27.9422 28.0992 28.7384 30.2021 29.7505 3
38.958 38.9090 37.6169 36.4329 35.3445 33.4138 31.0353 31.2956 4
46.941 46.1729 45.8284 45.6945 65.8800 46.0678 46.7499 47.0885 5
5.0 3.2608 3.2251 3.2099 3.2164 3.2382 3.3034 3.3898 3.4173 1
12.434 12.3013 12.2811 12.2789 12.2872 12.3085 12.2915 12.2309 2
26.122 25.8533 25.7836 25.8495 26.0339 26.6842 28.0790 27.2950 3
35.052 35.0281 33.9649 32.9840 32.0756 30.4476 28.4107 29.0882 4
42.873 42.4555 42.2318 42.1847 60.7640 42.6634 43.3332 43.6556 5
10 3.0959 3.0805 3.0736 3.0869 3.1140 3.1856 3.2750 3.3028 1
11.805 11.7476 11.7377 11.7440 11.7590 11.7897 11.7823 11.7288 2
24.799 24.6834 24.6488 24.7419 24.9464 25.6174 26.9992 26.1886 3
33.371 33.3619 32.3844 31.4805 30.6412 29.1317 27.2334 27.9769 4
40.700 40.5218 40.3637 40.3679 58.1686 40.9218 41.5962 41.9124 5
and matrices
B —Bj5 0
[Al=|-B5 BY 0 |
0 0 Af
0 0 0
(B]={0 0 A%j
0 —Af5 o
W2 —W2I 0
[Cl =|-wLy W5 — Af 0
0 0 W2

If the piezoelectric layer is employed as a distributed sensor, charge output of which can be calculated as

L
Q= [pda=1b [ Dds = (bhis/ 35 o — h6/2)]

(18)
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Table 2. Frequency parameter A = w(L?/h)/p,/E; of CC-beam for various thickness of intermediate piezoelectric patch in different
gradient index (n) and L;, /h;, = 10.

Thickness ratio (hy, /hy)

N Reference [6] 0 0.1 0.2 0.3 0.5 0.8 1.0 Mode No.
0.1 10.82 10.8205 10.3073 9.9140 9.6138 9.2118 8.8843 8.7383 1
727.809 27.7924 27.3374 26.9592 26.6431 26.1204 25.3414 24.6945 2
50.364 50.3343 49.7159 49.3971 48.9573 45.4864 41.8199 40.1899 3
56.379 56.3731 53.5391 51.0869 49.3198 49.7346 51.3394 52.7708 4
76.611 76.5667 75.1039 74.1304 73.5402 73.1408 73.4384 73.7288 5
0.2 10.253 10.2319 9.7867 9.4459 9.1873 8.8451 8.5707 8.4457 1
26.337 26.2854 25.9019 25.5884 25.3306 24.9093 24.2638 23.7051 2
47.704 47.6118 47.1022 46.8619 46.8433 43.692 40.2557 38.6977 3
53.561 53.5455 51.0221 48.8170 46.8839 947.3356 48.9906 50.4250 4
72.577 72.4358 71.2142 70.4244 69.9750 69.7644 70.1943 70.5147 5
0.5 9.1864 9.1182 8.7889 8.5397 8.3543 8.1188 7.9387 7.8508 1
23.594 23.4254 23.1619 22.9567 22.7957 22.5405 22.1139 21.7043 2
42.727 42.4315 42.106 42.0014 42.0834 40.0176 37.0387 35.6358 3
48.044 48.0050 646.0206 44.2553 42.6807 42.7030 44,4172 45.8270 4
64.989 64.5588 63.7416 63.2643 63.0557 63.1656 63.8138 64.1851 5
1.0 8.3437 8.2292 7.9819 7.7984 7.6661 7.5079 7.3957 7.3344 1
21.404 21.1256 20.9450 20.8134 20.7171 20.5705 20.2868 19.9786 2
38.721 38.2389 38.0419 38.0302 38.1797 36.6395 34.0633 32.8117 3
43.242 43.1884 41.6006 40.1683 38.8731 38.8741 40.5855 41.9358 4
58.840 58.1469 57.6043 57.3389 57.2907 57.6024 58.3681 58.7625 5
2.0 7.6610 7.5376 7.3478 7.2107 7.1157 7.0112 6.9452 6.9023 1
19.608 19.3119 19.1879 19.1053 19.0510 18.9730 18.7803 18.5397 2
35.398 34.8940 34.7836 34.8325 35.0216 33.4871 31.2654 30.1613 3
38.958 38.9091 37.6193 36.4435 35.3688 35.7445 37.3983 38.6618 4
53.695 52.9791 52.6171 52.4857 52.5324 52.9447 53.7380 54.1268 5
5.0 7.0184 6.9493 6.8031 6.7011 6.6342 6.5694 6.5364 6.5066 1
17.909 17.7560 17.6738 17.6263 17.6010 17.5682 17.4348 17.2402 1
32.279 32.0050 31.9598 32.0532 32.0909 30.4996 28.5903 27.6276 3
35.052 35.0282 33.9660 32.9900 32.2690 32.9997 34.5735 35.7399 4
48.873 48.4886 48.2580 48.2204 48.3283 48.7891 49.5618 49.9273 5
10 6.6638 6.6339 6.5082 6.4234 6.3705 6.3259 6.3086 6.2843 1
17.014 16.9432 16.8812 16.8507 16.8392 16.8264 16.7160 16.5396 2
30.647 30.5295 30.5198 30.6407 30.6548 29.1786 27.3983 26.4960 3
33.371 33.3620 32.3855 31.4858 30.8771 31.6291 33.1894 34,3221 4
46.401 46.2376 46.0778 46.0955 46.2437 46.7463 47.5239 47.8816 5

3. Dynamic stiffness matrix for FGM beam element with piezoelectric layer

3.1. General solution of vibration in FGM beam with piezoelectric layer
Seeking solutions of equation (17) in the form: Z, = de** leads to characteristic equation

det[¥A+ B +C]=0 (19)

This is in fact a cubic algebraic equation with respect to = M* that can be easily solved to give three roots 11, 735,
13, so that one obtains

Mg = ks A5 = Tk M6 = Lhss kj = \/ﬁj,] =1,2,3.

As a consequence, general solution of equation (17) is represented as

dll dlZ d16 ex\lx

{z0} =|do doy - dis :
dy1 dyy ... dss ereX
[(05] C1 (&%) C2 Qg C6 6)‘1x

= G G Cs :

BiG B2Cy ... B6Ce e
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Table 3. Frequency parameter A = w(L?/h)/p,/E; of CE-beam for various thickness of intermediate piezoelectric patch in different
gradient index (n) and L;, /h;, = 10.

Thickness ratio (hy, /hy)

Indexn Reference [6] 0 0.1 0.2 0.3 0.5 0.8 1.0 Mode No.
0.1 1.7966 1.7954 1.7771 1.7608 1.7458 1.7169 1.6711 1.6383 1
10.782 10.7744 10.4733 10.2903 10.2012 10.2243 10.5215 10.7624 2
28.190 28.1583 27.2746 26.4421 25.6609 24.2303 22.3441 21.2295 3
28.404 28.4174 28.1901 28.0659 28.0285 28.1543 28.6475 29.0841 4
51.618 51.5826 50.8910 50.5109 50.3793 50.6939 52.1539 53.4942 5
0.2 1.7010 1.6972 1.6819 1.6685 1.6561 1.6319 1.5922 1.5630 1
10.208 10.1850 9.9345 9.7887 9.7271 9.7834 10.0946 10.3315 2
26.781 26.6685 25.9008 25.1714 24.4810 23.1999 21.4769 20.4420 3
26.895 26.9501 26.7631 26.6716 26.6595 26.8152 27.3132 27.7369 4
48.878 48.7694 48.1946 47.8987 47.8301 48.2289 49.7489 51.0999 5
0.5 1.5244 1.5120 1.5019 1.4932 1.4852 1.4689 1.4395 1.4166 1
9.1477 9.0719 8.9075 8.8265 8.8128 8.9265 9.2584 9.4851 2
24.024 23.7474 23.2129 22.6726 22.1453 21.1336 19.7125 18.8307 3
24.098 24.1860 24.0317 23.9834 24.0077 24.2043 24.6946 25.0840 4
43.787 43.4392 43.0616 42.9099 42.9490 43.4870 45.0843 46.4249 5
1.0 1.3864 1.3655 1.3589 1.3536 1.3486 1.3377 1.3156 1.2972 1
8.3146 8.1884 8.0843 8.0489 8.0688 8.2207 8.5608 8.7760 2
21.623 21.3649 20.9543 20.5375 20.1238 19.3096 18.1247 17.3698 3
21.886 21.8317 21.7425 21.7366 21.7903 22.0133 22.4835 22.8359 4
39.732 39.1649 38.9237 38.8721 38.9840 39.6064 41.2161 42.5088 5
2.0 1.2762 1.2534 1.2493 1.2462 1.2433 1.2362 1.2192 1.2042 1
7.6640 7.5082 7.4456 7.4410 7.4827 7.6569 7.9954 8.1987 2
19.481 19.3740 19.0281 18.6879 18.3509 17.6805 16.6833 16.0361 3
20.088 19.8607 19.8434 19.8803 19.9602 20.2011 20.6451 20.9602 4
36.403 35.8065 35.6584 35.6729 35.8295 36.4892 38.0541 39.2680 5
5.0 1.1722 1.1594 1.1571 1.1556 1.1542 1.1498 1.1367 1.1242 1
7.0111 6.9351 6.9038 6.9224 6.9799 7.1683 7.5003 7.6916 2
17.527 17.5049 17.2438 16.9774 16.7075 16.1584 15.3217 14.7698 3
18.391 18.2274 18.2281 18.2804 18.3695 18.6087 19.0135 19.2880 4
33.262 32.9360 32.8594 32.9239 33.1120 33.7872 35.2781 36.3955 5
10 1.1130 1.1074 1.1061 1.1054 1.1047 1.1013 1.0897 1.0783 1
6.6562 6.6234 6.6086 6.6401 6.7072 6.9053 7.2355 7.4201 2
16.686 16.6779 16.4513 16.2151 15.9722 15.4712 14.6979 14.1846 3
17.459 17.3874 17.3964 17.4554 17.5482 17.7853 18.1691 18.4234 4
31.575 31.4357 31.3977 31.4924 31.7030 32.4012 33.8761 34.9547 5

with constants C,,...,Cg and

aj = (WY + 0B /(Wi + 1;BY);
B = N A/ (WL + n AS)s j=1,2,3

The latter expressions show that oy = a3 as = 3 ag = as; By = —01; O = — 0 Bs = — 0. Therefore,
general solution of (17) can be rewritten in the form

{zo(x, W)} = [Go(x, W)]{C} (20)

where {C} = (C,,...,Co) and [Gy(x, w)]is the matrix

kix azekz" Ol36k3x Olleiklx azeszx Oé3€7k3x

eklx ekzx ek3x efklx eszx e*k}x . (21)

Bleklx /Bzekzx ﬁsekgx _ Blefklx _ /Bzeszx _ B€7k3x

e

3.2. Dynamic stiffness matrix formulation
Considering a beam element as shown in figure 2, where the following nodal displacement and force vectors are
introduced
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Figure 4. Natural frequencies of SS-beam in dependence on normalized thickness of piezoelectric patch bonded onto different
positions on beam and gradient index of functionally graded material: (a) first; (b) second and (c) third frequency.

{(U(w)} = (U, ©1, W;, Uy, Oy, Wo)T 5
{P(w)} = (N, Mj, Qi, Np, My, Qa)F (22)
With
U= U0, w); 61 = O(0, w); Wi = W(0, w);
U, =U(L, w); 0, =O(L, w); W, = W(L, w);
N = (B50:0 — BJi0,U)x—o;
M; = (B50:U — B},0,0)s—0;
Q1 = A33(0 — 0 W)y—p3
N, = (B10.U — Bj30:0).—1;




10P Publishing

Mater. Res. Express 7 (2020) 055704

N T Khiem et al

-
s
o

First frequency of CC-beam N
~N © © L ° 4
wn =] w © wn o wn -

~

o
o

0.2 0.3 . 0.5 0.6 0.7 0.8
Normalized thickness of piezoelectric patch (hp/hb)

(b)

N
iy
T

Second frequency of CC-beam
8 N

-
©
T

18

N
3}
/
=3
1]
[=]
&)

N

=

/
ls
[
-
(=]

n=2.0

T T T T T
patch at the beam middle —-—-— Patch at the beam end

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized thickness of piezoelectric patch (hp/hb)

(©)

IS
o

B
[=]

w
o

T T T T T T

Third frequency of CC-beam

8

25

0.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized thickness of piezoelectric patch (hp/hb)

Figure 5. Natural frequencies of CC-beam in dependence on normalized thickness of piezoelectric patch bonded onto different
positions on beam and gradient index of functionally graded material: (a) first; (b) second and (c) third frequency.

M, = (B$,0,0© — B50,U)s_15
Q2 = As3(0:W — ©),—1.

Rewrite the latter equations in matrix form

{Us, ©1, Wi, U, O, Mo} = [Z(w)I{C}; {N1, My, Q1, Na, My, Qa}T
= [Qw)]{C},

where

[Z(w)] = [

Q(O’ w) . _ _R[Q(x) w)]x:O
oL, w)]’ [Q) = [ RIS, )]s ]

(23)

(29)

10
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Figure 6. Natural frequencies of CF-beam in dependence on normalized thickness of piezoelectric patch bonded onto different
positions on beam and gradient index of functionally graded material: (a) first; (b) second and (c) third frequency.

and R is differential operator
Bjidx —B3d. 0
[Rl =|-B50« B0, 0
0 —A¥, A0,
Eliminating vector C from equation (23) leads to

{Q.} = [De(wW)]{ U},

where matrix

[De(w)] = [Qw)] - [Z(w)]™!

is called hereby dynamic stiffness matrix for the FGM Timoshenko beam element.

(25)

(26)

(27)

11
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Figure 7. Variation of normalized first (left) and second (right) frequencies versus relative thickness of piezoelectric patch bonded
onto (a) the ends; (b) the middle and (c) full-length of SS-beam for different gradient index (n = 0.2 —0.5-1.0-2.0-5.0-10) of the
material.

In general case, when a given structure consists of a number of beam elements, the total dynamic stiffness
matrix for the structure is assembled accordingly to that as accomplished in the finite element method. Namely,
the dynamic stiffness matrix is assembled by

e=1
[D()] = > [T ' [De(w)] - [Te]. (28)

4. Numerical results for illustration and validation

Consider an FGM beam bonded by a piezoelectric patch as shown in figure 3. Recalling the notations for size
(thickness and length) of the piezoelectric patch and host beam, we can note that the single beam segment
without piezoelectric patch is a particular case of the two-layer one when 1, = 0. So that the FGM beam bonded
with a piezoelectric patch is now considered as a structure consisting of three beam elements, one of which is the
beam element with piezoelectric layer considered above the other two elements are simple ones without
piezoelectric layer. Position of piezoelectric patch bonded on beam is defined by the distance measured from the
left end of beam to the left end of piezoelectric patch. The particular case considered below is that shown in

12
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Figure 8. Variation of normalized first (left) and second (right) frequencies versus relative thickness of piezoelectric patch bonded
onto (a) the clamped ends; (b) the middle and (c) full-length of CC-beam for different gradient index (n = 0.2 —0.5-1.0-2.0-5.0-10)
of the material.

figure 3 where length of three elements is the same and position of piezoelectric patch is acknowledged as the left,
right (boundary) and intermediate (middle) one.
Suppose that constants of FGM and piezoelectric material are

E, =390 GPa, p, = 3960 kgm~, u, = 0.25; E, = 210 GPa,
pp = 7800 kg m~3, p, = 0.31; Cf; = 69.0084 GPa,
Cl = 21.0526 GPa, p, = 7750 kg m ™,
hi3 = —7.70394 x 103V m~!, 8, = 7.3885 x 10’ m F~..

So, natural frequency parameter A = w(L?/h)/p,/E; are computed as function of thickness ratio hy /[y
(called below normalized thickness of piezoelectric patch) for various gradient index 7 of the material. Five
lowest frequency parameters computed for three traditional cases of boundary conditions such as simply
supported (SS), clamped-clamped (CC) and clamped-free (CF) end beam are given in tables 1-3. For
comparison, there are provided also in the tables the frequency parameters computed for the FGM beam without
piezoelectric patch by DSM proposed in Su and Banerjee, 2015 that is shortly noticed in the Tables as S&B.
Agreement between the frequency parameters computed in the present study for the case if b, = 0 and those
obtained in the Reference mentioned above is a fact that validates reliability of the proposed theoretical
development. Also, three lowest natural frequencies of the beams in dependence of the normalized thickness of

13
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Figure 9. Variation of normalized first (left) and second (right) frequency versus thickness of piezoelectric patch bonded onto
(a) the clamped end; (b) the free end; (c) the middle and (d) full-length of cantilever beam in various gradient index (n = 0.2
—0.591.0-2.0-5.0-10) of the material.

the piezoelectric patch bonded on various positions on beam and gradient index of the functionally graded
material are illustrated in figures 1-3.
For illustrating a more typical effect of the piezoelectric patch on variation of natural frequencies, the ratio of
natural frequencies of beam with piezoelectric patch to those of beam without the patch is introduced and
acknowledged herein as normalized natural frequencies. The ratio computed for two modes of FGM beam with

14



10P Publishing

Mater. Res. Express7 (2020) 055704 N T Khiem et al

piezoelectric patch bonded on three different positions (two at boundaries and one at the middle) and the beam
with full-length bonded piezoelectric layer is presented in the subsequent figures 4—6. The latter figures are
provided in two columns representing two the frequencies and four rows corresponding to the locations where
the piezoelectric patch is bonded onto. Since the boundary conditions of SS- and CC-beams are symmetrical,
natural frequencies are independent upon which end the piezoelectric patch is bonded on. So that in the

figures 4-5 corresponding to SS- and CC-beams there are only three rows, while in figure 6 representing the
normalized frequencies of CF-beam we have got four rows.

Observing the data given in tables 1-3 and figures 4—6 one can make a discussion as follows: comparing the
natural frequencies computed in this study for FGM beam with piezoelectric patch of zero thickness with those
computed for FGM beam without piezoelectric patch given in Su and Banerjee, 2015 shows very good agreement
between the results. This can be acknowledged as a validation of the theory developed above for FGM beam with
piezoelectric patch. Natural frequencies of an FGM beam bonded with a piezoelectric patch remain to decrease
with increasing gradient index n of the material as those of the beam without piezoelectric patch. Natural
frequencies of FGM beam bonded with piezoelectric patch as function of the patch thickness are dependent on
boundary conditions and where the piezoelectric patch is bonded on beam. Namely, for the beam of symmetric
boundary conditions such as SS- and CC-beams, first two natural frequencies are both monotonically
decreasing with increasing thickness of piezoelectric patch bonded onto the beam middle. In the case when the
piezoelectric patch is attached to the clamped ends of CC-beam, first frequency of the beam is monotonically
increasing while second and third frequencies are monotonically decreasing. In the latter case, all three natural
frequencies of SS-beam are varying not monotonically, but first slightly decreasing then increasing with the
thickness. More attractive behavior is observed for natural frequencies of CF-beam that are all monotonically
reducing with growing of the patch thickness when the piezoelectric patch is bonded to the beam free end. While
the first and second frequencies are both monotonically growing when the patch is attached to the clamped end.
This was well known fact in studying cantilever beam with attached mass.

A more fruitful insight to the variation of natural frequencies versus thickness of piezoelectric patch and
gradient index of material can be provided by examining the ratio of natural frequencies of beam with
piezoelectric patch to those of the base beam alone. The ratios called above normalized frequencies are
computed in dependence upon thickness of the piezoelectric patch for various material gradient index and
different patch locations. Graphs of the normalized natural frequencies given in figures 7-9 corresponding to the
cases of conventional boundary conditions allow one to make the following notices. First, it is observed that the
ratios are increasing with material gradient index n what is opposite to the variation of the natural frequencies
themselves. Next, the normalized natural frequencies of beam covered with full-length piezoelectric layer vary in
the same (parabolic) mode for all the three cases (SS/CC/CF) of boundary conditions. A similar (to the latter)
mode of variation appears also for second frequency of SS- and CC-beam with piezoelectric patch bonded onto
the beam ends. The normalized first frequency of CC- and CF- beams with piezoelectric patch bonded onto
clamped end is monotonically increasing with the patch thickness. Both two normalized frequencies of CC-
beam with intermediately bonded piezoelectric patch and CF-beam with the patch bonded onto free end are
monotonically decreasing when the thickness is growing. Finally, the normalized frequencies of SS-beam with
piezoelectric patch are varying in non-monotonous mode, but it can be noticed herein that variation of the
normalized first frequency along thickness of piezoelectric patch attached to the beam end is similar to variation
of normalized second frequency when the patch is intermediately bonded on the beam.

All the above made notices demonstrate the fact that effect of a bonded piezoelectric patch on the dynamic
characteristics of an FGM beam is strongly coupled with the effect of functionally graded material properties.
This exhibits an interaction between the electro-elasticity of piezoelectric and functionally graded materials.

5. Conclusions

Natural frequencies are examined for an FGM beam bonded with a piezoelectric patch that includes also the case
of beam covered with full-length piezoelectric layer using the dynamic stiffness method. First, a model of FGM
beam element with a piezoelectric layer is proposed using the power law of material property grading and
Timoshenko beam theory. The piezoelectric layer has the same width as the host beam and is modeled as a
homogeneous Timoshenko beam element. The dynamic stiffness model of the beam element is first developed
and then used for modal analysis of the FGM beam with piezoelectric patch as a multistep beam structure.
Numerical analysis has been carried out to study dependence of the natural frequencies on the piezoelectric
patch thickness, location and gradient index of the functionally graded material. It was demonstrated that
piezoelectric patch bonded to a beam does not change the basic properties of the beam material, but it can make
change (either increase or decrease) in natural frequencies of the beam. Namely, piezoelectric patch makes the
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natural frequencies increased/decreased when it is bonded closely to the clamped/free end of beam. In general,
thin/thick piezoelectric patch or layer reduces/increases the stiffness of the beam.

The sensor and actuator problem of the piezoelectric patch has not been investigated in the present work; it
would be a subject for further study of the authors.
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