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Modal analysis of cracked FGM beam with piezoelectric layer
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cFaculty of Water Resources Engineering, Thuy Loi University, Hanoi, Vietnam

ABSTRACT
The present paper addresses modal analysis of cracked Timoshenko beam
bonded with piezoelectric layer. The host beam is made of functionally
graded material with the power law and crack appeared in the host beam
is modeled by a pair of axial and rotational springs with stiffness calculated
from its depth. The piezoelectric layer is represented as a homogeneous
Timoshenko beam. Governing equations and general solution for free
vibration of the cracked double beam are conducted in the frequency
domain. The obtained solution has been used for examining modal param-
eters of the coupled beam that include natural frequencies, mode shapes
and so-called modal sensor charge in dependence on crack parameter,
material gradient index and thickness of piezoelectric layer. Analysis of the
modal sensor charge in dependence upon crack parameters provides a
novel indicator that is expected to be more efficient than the traditional
ones for crack detection in functionally graded beam using distributed
smart sensors. The theoretical development is validated and illustrated by
numerical analysis accomplished for simply supported beam.
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1. Introduction

Damage detection in general, or crack identification in particularity, is essential problem in the
structural health monitoring that has been intensively studied through several latest decades and
it was reviewed by numerous authors, for instance, Sohn et al. (2003), Fan and Qiao (2011) and
Hou and Xia (2021). Most of researchers in the field of structural health monitoring have agreed
to that dynamic behavior or vibration circumstance of a structure provides the most useful tool
for diagnosis of potential damages in the structure. However, the conventional approach such as
the dynamic testing technique to gather dynamic features necessary for structural health monitor-
ing is limited to collect insufficient data for solving the inverse problem of the structural damage
identification. Alternately, many authors (Rao and Sunar 1994; Park et al. 2003; Giurgiutiu 2007;
Duan, Wang, and Quek 2010, etc.) have demonstrated that using smart material such as piezo-
electric one the structural health monitoring becomes much more advantaged in both its imple-
mentation and success in damage detection. This is because of the smart material could be used
not only for sensing signal of the structure response as a sensor but also for transmitting load to
structure as an actuator. Additionally, the smart transducers are distributed (Tzou and Tseng
1990) and may be permanently installed as components working together with structure of inter-
est (Crawley and De Luis1987). Recent progress in structural health monitoring using distributed
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piezoelectric transducers was reported in Winston, Sun, and Annigeri 2000; Bhalla and Soh 2006;
Huang, Song, and Wang 2010; Shu 2017; Na and Baek 2018.

Obviously, the use of smart distributed sensor/actuator for structural health monitoring is
essentially leading to analysis of structures with smart components. Namely, Wang and Quek
(2000) used the sandwich beam model for modal analysis of a Euler-Bernoulli beam embedded
with piezoelectric layers and they found that natural frequency of the sandwich beam is function
of stiffness and thickness of the piezoelectric layers. Wang and Quek (2002) showed that the
buckling and flutter capacities of an elastic column could be enhanced by using piezoelectric
patches bonded to both sides of the column as actuators with an applied voltage. Wang, Duan,
and Quek (2004) revealed an effect of a piezoelectric patch bonded to a beam on its natural fre-
quency and demonstrated an interesting fact that piezoelectric patch used as an actuator could
restore the healthy condition of a cracked beam. Zhao, Wu, and Wang (2017) proposed a proced-
ure for crack identification in beam based on the crack-induced frequency change that is ampli-
fied by applying a feedback voltage output from piezoelectric sensor through collocated actuator.
The so-called Electro-Mechanical Impedance (EMI) method was developed in Ritdumrongkul
and Fujino 2007; Wang, Song, and Zhu 2015; Wang et al. 2020 for crack identification in beam
using piezoelectric transducers. The authors have concluded that the EMI is sensitive to local
damage such as crack only at the high frequency range and when the transducer is positioned
near the damage location. Therefore, using a piezoelectric layer bonded to a beam structures as
full-length distributed sensor is promising idea to gather diagnostic signal for damage detection
that is investigated in the present study for functionally graded beam with crack.

Various problems in dynamics of functionally graded beams and plates were studied in the
widespread literature, for instance, Li 2008; Sina, Navazi, and Haddadpour 2009; Larbi et al. 2013;
Hu and Zhang 2011; Su and Banerjee 2015; Wang, Liang, and Jin 2017. Numerous works are
devoted also to study vibrations of the beams with localized damages such as cracks, for example,
Yang and Chen 2008; Akbas 2013; Aydin 2013; Khiem, Tran, and Nam 2020. Some procedures
were proposed by Yu and Chu (2009); Banerjee, Panigrahi, and Pohit (2016) and Khiem and
Huyen (2017) to detect cracks in functionally graded beams with natural frequencies measured by
the conventional technique of modal testing. There are few studies reported on smart structures
made of Functionally Graded Material (FGM). Namely, stability of FGM Timoshenko beam
embedded by the top and bottom piezoelectric layers has been investigated by Khorramabadi and
Nezamabadi (2010) and it is found a significant effect of both the piezoelectric actuators and
FGM parameters on the critical buckling loads. Li, Feng, and Cai (2014) even proposed a model
of functionally graded piezoelectric beam for its vibration analysis and revealed the increase of
natural frequency and decrease of electric potential with increasing gradient index of the material.
Bendine et al. 2016 studied the problem for active vibration control of functionally graded beams
with upper and lower surface-bonded piezoelectric layers by the finite element method. Khiem,
Hai, and Huong 2020 examined the effect of piezoelectric patches on natural frequencies of
undamaged functionally graded beam. However, to the authors knowledge, the damage detection
for FGM structures using smart sensor/actuator has not received adequate concern.

The above short overview shows that using smart material such as piezoelectric one as distrib-
uted sensor for structural damage detection in composite structures (Golewski 2021) such as
FGM structures is necessary, but it has not been paid adequate attention. The most important
issue for solving the problem of the damage identification is modeling and analysis of damaged
structures coupled with smart sensors. Thus, the present paper addresses modal analysis of
cracked FGM beam with a bonded piezoelectric layer. Governing equations and general solution
for free vibration of the coupled smart beam are conducted and used for examining modal
parameters such as natural frequencies, mode shapes and so-called modal sensor charge generated
in the piezoelectric layer under the vibration modes in dependence upon crack depth and loca-
tion. This study can be distinguished from other ones first by that a piezoelectric sensor used to
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gather vibration behavior of an FGM beam needed for its crack identification is distributed over
the beam length and bonded to the beam as it’s a structural layer. Secondly, while the most of
earlier authors intended to use the conventional modal parameters for solving the crack detection
problem, this study aimed directly to analysis of the sensor output charge with purpose to use it
as an indicator for crack detection in FGM beam. The charge is much more easily to measure
than the EMI or extracted from those natural frequencies.

2. Governing equations

Consider an FGM beam of length L, cross sectional area Ab ¼ b� hb (Figure 1). It is assumed
that the material properties of the beam vary along the thickness direction by the power law dis-
tribution as follows

RðzÞ ¼ Rb þ ðRt �RbÞðz=hþ 0:5Þn;�hb=2 � z � hb=2, (1)

where R stands for Young’s, shear modulus and material density E, G, q; subscripts t and b
denote the top and bottom material respectively; n is power law exponent; z is ordinate of point
along the beam height from the mid plane. Assuming small deformation in the framework of
Timoshenko beam theory, the constituting equations for the beam at section x are

uðx, z, tÞ ¼ u0ðx, tÞ � ðz � h0Þhðx, tÞ ; wðx, z, tÞ ¼ w0ðx, tÞ;
rx ¼ EðzÞex; sxz ¼ jGðzÞcxz;ex ¼ @u0=@x� ðz � h0Þ@h=@x; cxz ¼ @w0=@x� h, (2)

where uðx, z, tÞ,wðx, z, tÞ are axial and transverse displacements in cross-section at x;
u0ðx, tÞ,w0ðx, tÞ are the displacements on the neutral plane and h is rotation of the cross-section;
ex, cxz,rx, s are deformation and strain components; j is geometry correction factor; h0 is
acknowledged as exact position of neutral plane measured from the beam midplane. Based on the
condition for neutral plane of the FGM beam, the actual position of neutral axis is calculated as

h0 ¼ nðre � 1Þh=2ðnþ 2Þðnþ reÞ; re ¼ Et=Eb: (3)

Using the constitutive equations (2) strain energy of the beam is calculated as

Pb ¼
�
1=2Þ

ð ð ð
ðrxex þ sxzcxzÞdVb ¼ 1=2ð Þ

ð ð ð
½E zð Þe2x þ jGðzÞc2xz�dVb ¼

¼ 1=2ð Þ
ðL
0

A11u
02
0 � 2A12u

0
0h

0 þ A22h
02 þ A33ðw0

0 � hÞ2
n o

dx, (4)

Figure 1. FGM beam element with piezoelectric layer.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 3



where comma denotes derivative with respect to spatial variable x and

A11 ¼
ð
A
E zð ÞdA ¼ bhEbu1 re, nð Þ;A12 ¼

ð
A
EðzÞðz � h0ÞdA ¼ bh2Ebu2ðre, nÞ;

A22 ¼
ð
A
EðzÞðz � h0Þ2dA ¼ bh3Ebu3ðre, nÞ;A33 ¼ j

ð
A
G zð ÞdA ¼ bhjGbu1 rg , nð Þ; (5)

u1 x, nð Þ ¼ ðxþ nÞ=ð1þ nÞ;u2ðx, nÞ ¼ ð2xþ nÞ=2ð2þ nÞ � aðxþ nÞ=ð1þ nÞ;
u3ðx, nÞ ¼ ð3xþ nÞ=3ð3þ nÞ � að2xþ nÞ=2ð2þ nÞ þ a2ðxþ nÞ=ð1þ nÞ;

rq ¼ qt=qb; re ¼ Et=Eb; rg ¼ Gt=Gb; a ¼ 1=2þ h0=hb:

On the other hand, kinetic energy of the beam is

Tb ¼
�
1=2Þ

ð ð ð
q _u2 þ _w2ð ÞdV ¼ 1=2ð Þ

ðL
0

I11 _u
2
0 � 2I12 _u0

_h þ I22 _h
2 þ I11 _w

2
0

n o
dx (6)

with

I11 ¼
ð
A
qðzÞdA ¼ bhbqbu1

�
rq, n

�
; I12 ¼

ð
A
q zð Þ z � h0ð ÞdA ¼ bh3bqbu2ðrq, n

�
; (7)

I22 ¼
ð
A
qðzÞðz � h0Þ2dA ¼ bh3bqbu3ðrq, n

�
:

Let’s now consider the piezoelectric layer as a homogeneous Timoshenko beam element, so that
constitutive equations can be expressed as

up x, z , tð Þ ¼ up0 x, tð Þ � zhp x, tð Þ,wp x, z , tð Þ ¼ wp0 x, tð Þ;
epx ¼ u0

p0 � zh
0
p, cp ¼ w0

p0 � hp; (8)

rpx ¼ Cp
11epx � h13D; sp ¼ Cp

55cp; 2¼ �h13epx þ bp33D,

where Cp
11, h13,b

p
33 are elastic modulus, piezoelectric and dielectric constants respectively. 2 and

D are electric field and displacement of the piezoelectric layer.
Perfect bonding of the base beam with the piezoelectric layer is represented by the conditions

u x,
hb
2
, t

� �
¼ up x, � hp

2
, t

� �
,w x, hb=2, tð Þ ¼ wp x, � hp=2, t

� �
, (9)

that yield

up0 ¼ u0 � hh=2, h ¼ hb þ hp,wp0 ¼ w0, h ¼ hp: (10)

Therefore

epx ¼ u0
0 � ðz þ h=2Þh0, cp ¼ w0

0 � h; (11)

and strain and kinetic energies of the layer can be calculated as

Pp ¼ 1
2

ð ð ð
ðrpxepx þ spcpþ 2 DÞdVp ¼ 1

2

ð ð ð
½Cp

11e
2
px � 2h13Depx þ Cp

55c
2
p þ bp33D

2�dVp ¼

¼
�
1=2Þ

ðL
0

Cp
11Apu

02
0 � Cp

11Aphu
0
0h

0 þ Cp
11ðIp þ Aph

2=4Þh02 þ Cp
55Ap w

0
0 � h

� �2
� 	

dx�
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�
�
1=2Þ

ðL
0

2h13ApDðu0
0 � hh0=2Þ � bp33ApD

2
n o

dx; (12)

Tp ¼ 1
2

ð ð ð
qp _u2

p þ _w2
p

� �
dV ¼ 1

2

ðL
0

qpAp _u
2
0 � qpAph _u0

_h þ ðqpIp þ qpAph
2=4Þ _h2 þ qpAp _w

2
0

n o
dx,

where Ap ¼ bhp; Ip ¼ bh3p=12: Therefore, total strain and kinetic energies of the coupled beam
are

P ¼ Pb þPp ¼¼
�
1=2Þ

ðL
0

A�
11u

02
0 � 2A�

12u
0
0h

0 þ A�
22h

02 þ A�
33 w

0
0 � h

� �2
�2h13ApDðu0

0 � hh0=2Þ þ bp33ApD2

( )
dx, (13)

T ¼ Tp þ Tp ¼ 1=2ð Þ
ðL
0

I�11 _u
2
0 � 2I�12 _u0

_h þ I�22 _h
2 þ I�11 _w

2
0

n o
dx,

where

A�
11 ¼ A11 þ Cp

11Ap; A�
12 ¼ A12 þ Cp

11Aph=2; A�
22 ¼ A22 þ Cp

11ðIp þ Aph
2=4Þ; (14)

A�
33 ¼ jA33 þ Cp

55Ap; I�11 ¼ I11 þ qpAp; I
�
12 ¼ I12 þ qpAph=2; I

�
22 ¼ I22 þ qpIp þ qpAph

2=4:

Putting expressions (13) to the Hamilton’s principle

ðt2
t1

d T �Pð Þdt ¼ 0,

one gets

I�11€u0 � A�
11u

00
0

� �� I�12€h � A�
12h

00
� �

þ h13ApD
0 ¼ 0; I�11€w0 � A�

33 w00
0 � h0

� � ¼ 0;

I�12€u0 � A�
12u

00
0

� �� I�22€h � A�
22h

00
� �

þ A�
33 w0

0 � hð Þ þ h13AphD
0=2 ¼ 0; (15a)

h13Ap u0
0 � hh0=2

� �� bp33ApD ¼ 0

and

ðA�
11u

0
0 � A�

12h
0 þ h13ApDÞdu0


 �L
0 ¼ 0; ðA�

21u
0
0 � A�

22h
0 þ h13AphD=2Þdh


 �L
0 ¼ 0;

ðA�
33ðw0

0 � hÞdw0

 �L

0
¼ 0: (15b)

The last equation in (15a) allows one to find D ¼ h13 u0
0 � hh0=2

� �
=bp33, so that remaining equa-

tions in (15) can be written as

I�11€u0 � B�
11u

00
0

� �� I�12€h � B�
12h

00
� �

¼ 0;

I�12€u0 � B�
12u

00
0

� �� I�22€h � B�
22h

00
� �

þ A�
33 w

0
0 � h

� �
¼ 0; (16)

I�11€w0 � A�
33 w00

0 � h0
� � ¼ 0

and

ðB�
11u

0
0 � B�

12h
0Þdu0

h iL
0
¼ 0; ðB�

21u
0
0 � B�

22h
0Þdh

h iL
0
¼ 0; ðA�

33ðw
0
0 � hÞdw0

h iL
0
¼ 0,

where the constants
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B�
11, B�

12, B�
22

are

B�
11 ¼ A�

11 � Aph
2
13=b

p
33 ¼ A11 þ EpAp, B�

12 ¼ A�
12 � Aphh

2
13=2b

p
33¼ A12 þ EpAph=2,

B�
22 ¼ A�

22 � Aph
2h213=4b

p
33 ¼ A22 þ Cp

11Ip þ EpAph
2=4; Ep ¼ Cp

11 � h213=b
p
33:

Transferring equations (16) into the frequency domain, one gets

A½ �fZ00ðx,xÞg þ ½B�fZ0ðx,xÞg þ C½ �fZðx,xÞg ¼ 0, (17)

where vectors

Z ¼ Uðx,xÞ,Hðx,xÞ,Wðx,xÞ� T ¼
ð1

�1
fu0 x, tð Þ, h x, tð Þ,w0 x, tð Þge�ixtdt,

Z0 ¼ dZ=dx,Z00 ¼ d2z=dx2

and matrices

A½ � ¼
B�
11 �B�

12 0
�B�

12 B�
22 0

0 0 A�
33

2
4

3
5 ; B½ � ¼

0 0 0
0 0 A�

33
0 � A�

33 0

2
4

3
5 ;

C½ � ¼
x2I�11 �x2I�12 0
�x2I�12 x2I�22 � A�

33 0
0 0 x2I�11

2
4

3
5:

If the piezoelectric layer is employed as a distributed sensor, the charge output of which can
be calculated as

Q ¼
ð
DdA ¼ b

ðL
0
Ddx ¼ ðbh13=bp33Þ u0 � hh=2ð ÞL0 : (18)

3. Crack model in FGM Timoshenko beam

Assume that the host FGM beam has been cracked at the position e measured from its left end.
Recently, some authors, for instance, Aydin (2013); Banerjee, Panigrahi, and Pohit (2016) have
proposed to model the crack by a rotational spring of stiffness calculated from the crack depth.
Viola, Nobile, and Federici (2002) and Viola, Marzani, and Fantuzzi (2016) and Kim et al. (2018)
used two (rotational and transversely extensional) spring model for analysis of cracked homoge-
neous Timoshenko beam. However, since axial and transverse vibrations in FGM beam are gener-
ally coupled, crack could change also axial vibration characteristics. Therefore, crack is modeled
in this study by two equivalent springs of stiffness T for axially translational spring and R for
rotational one (see Figure 2). Thus, conditions that must be satisfied at the crack are

Uðeþ 0Þ ¼ Uðe� 0Þ þ NðeÞ=T ; Hðeþ 0Þ ¼ Hðe� 0Þ þMðeÞ=R ; Wðeþ 0Þ ¼ Wðe� 0Þ;
U

0
xðeþ 0Þ ¼ U

0
xðe� 0Þ ;H0

xðeþ 0Þ ¼ H
0
xðe� 0Þ ;W 0

xðeþ 0Þ ¼ W
0
xðe� 0Þ þMðeÞ=R, (19)

where NðxÞ ¼ A11U
0
xðxÞ;MðxÞ ¼ A22H

0
xðxÞ are respectively internal axial force and bending

moment at section x.
Substituting the expressions for axial force and bending moment into (19) that can be rewrit-

ten as

6 N. T. KHIEM ET AL.



U eþ 0ð Þ ¼ U e� 0ð Þ þ c1U
0
x eð Þ ; H eþ 0ð Þ ¼ H e� 0ð Þ þ c2H

0
x eð Þ ;W eþ 0ð Þ ¼ W e� 0ð Þ;

U
0
xðeþ 0Þ ¼ U

0
xðe� 0Þ ;H0

xðeþ 0Þ ¼ H
0
xðe� 0Þ ;W 0

xðeþ 0Þ ¼ W
0
xðe� 0Þ þ c2H

0
xðeÞ; (20)

c1 ¼ A11=T; c2 ¼ A22=R:

The so-called crack magnitudes c1, c2 are functions of the material parameters such as elastic
modulus and they should be those of homogeneous beam when Et ¼ Eb ¼ E0: On the other
hand, using expressions (5) the crack magnitudes can be rewritten as

c1 ¼ A11=T ¼ cau1ðre, nÞ ; c2 ¼ A22=R ¼ cbu3ðre, nÞ, (21)

where ca ¼ EbA=T; cb ¼ EbIb=R and functions u1, u3 defined in (5). In case of homogeneous
beam when re ¼ 1 the crack magnitudes would be

c1 ¼ cau1ð1, 0Þ ¼ ca ¼ c10; , c2 ¼ cbu3ð1, 0Þ ¼ cb=12 ¼ c20,

that are calculated from crack depth a for axial and flexural vibrations as (Khiem, Huyen, and
Long 2017)

c10 ¼ E0A=T ¼ 2pð1� �20Þhf1ðzÞ; c20 ¼ E0I0=R ¼ 6p 1� �20
� �

hf2 zð Þ, z ¼ a=h; (22)

f1ðzÞ ¼ z2ð0:6272� 0:17248z þ 5:92134z2 � 10:7054z3 þ 31:5685z4 � 67:47z5þ
þ 139:123z6 � 146:682z7 þ 92:3552z8Þ;

f2ðzÞ ¼ z2ð0:6272� 1:04533z þ 4:5948z2 � 9:9736z3 þ 20:2948z4 � 33:0351z5þ
þ 47:1063z6 � 40:7556z7 þ 19:6z8Þ:

Thus, for vibration analysis of cracked FGM beam, crack magnitudes are proposed herein to
be calculated by

c1 ¼ c10u1ðre, nÞ ; c2 ¼ 12c20u2ðr3, nÞ: (23)

The calculated crack magnitudes c1, c2 are really dependent on both material and geometrical
parameters of FGM beam and they become identical to those of homogeneous beam when Et ¼
Eb ¼ E0 or re ¼ 1:

4. General solution for free vibration of cracked FGM beam with piezoelectric layer

Seeking solutions of equation (17) in the form: Z0 ¼ dekx leads to characteristic equation

det½k2Aþ kBþ C� ¼ 0 (24)

This is in fact a cube algebraic equation with respect to g ¼ k2 that can be easily solved to
give three roots g1,g2,g3, so that one obtains k1, 4 ¼ 6k1; k2, 5 ¼ 6k2; k3, 6 ¼ 6k3; kj ¼ ffiffiffiffigjp , j ¼
1, 2, 3: Consequently, general solution of equation (17) is represented as

Figure 2. Beam with open edge crack (a) and two spring model of crack (b).

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 7



Z0f g ¼
d11 d12 ::: d16
d21 d22 ::: d26
d31 d32 ::: d36

2
4

3
5 �

ek1x

..

.

ek6x

8><
>:

9>=
>; ¼

a1C1 a2C2 ::: a6C6

C1 C2 ::: C6

b1C1 b2C2 ::: b6C6

2
4

3
5: ek1x

..

.

ek6x

8><
>:

9>=
>;

with constants C1, :::,C6 and

aj ¼ ðx2I�11 þ gjB
�
11Þ=ðx2I�12 þ gjB

�
12Þ; bj ¼ kj A

�
33= x2I�11 þ gj A

�
33

� �
; j ¼ 1, 2, 3:

The latter expressions show that a4 ¼ a1; a5 ¼ a2; a6 ¼ a3; b4 ¼ �b1; b5 ¼ �b2; b6 ¼ �b3:
Therefore, general solution of (17) can be rewritten in the form

Z0ðx,xÞ
�  ¼ G0ðx,xÞ½ � Cf g (25)

where Cf g ¼ ðC1, :::,C6ÞT and G0ðx,xÞ is

G0ðx,xÞ½ � ¼
a1ek1x a2ek2x a3ek3x a1e�k1x a2e�k2x a3e�k3x

ek1x ek2x ek3x e�k1x e�k2x e�k3x

b1e
k1x b2e

k2x b3e
k3x �b1e

�k1x �b2e
�k2x �b3e

�k3x

2
4

3
5 (26)

Now, we seek a particular solution Zcðx,xÞ of Eq. (17) that satisfies the conditions

Zcð0Þ
�  ¼ caU

0
0ðeÞ, cbH

0
0ðeÞ, 0

� �T
; Z

0
cð0Þ

n o
¼ 0, 0, cbH

0
0ðeÞ

� �T
(27)

Putting expression (25) into (27) one finds

Zcðx,xÞ
�  ¼ ½Gcðx,x

�
�
n
Z

0
0ðe,x

�o
(28)

where Gðx,xÞ is 3� 3-matrix of the form

½Gc

�
x,xÞ� ¼

ca
P3

i¼1 aidi1 cos hkix cb
P3

i¼1 aiðdi2 þ di3Þ cos hkix 0
ca
P3

i¼1 di1 cos hkix cb
P3

i¼1ðdi2 þ di3Þ cos hkix 0
ca
P3

i¼1 bidi1 sin hkix cb
P3

i¼1 biðdi2 þ di3Þ sin hk2x 0

2
64

3
75 (29)

and

d11 ¼ k3b3 � k2b2ð Þ=D; d12 ¼ a3k2b2 � a2k3b3ð Þ=D; d13 ¼ a2 � a3ð Þ=D;
d21 ¼ k1b1 � k3b3ð Þ=D; d22 ¼ a1k3b3 � a3k1b1ð Þ=D; d23 ¼ a3 � a1ð Þ=D;
d31 ¼ k2b2 � k1b1ð Þ=D; d32 ¼ a2k1b1 � a1k2b2ð Þ=D; d33 ¼ a1 � a2ð Þ=D;

D ¼ k1b1ða2 � a3Þ þ k2b2ða3 � a1Þ þ k3b3ða1 � a2Þ:
Therefore, it is easily to verify that solution of Eq. (17) satisfying the conditions (20) can be rep-
resented as

Zðx,xÞ�  ¼ Z0ðx,xÞ
� 

: for x < e
Z0ðx,xÞ

� þ Zcðx� e,xÞ� 
: for e � x

(

that is rewritten in the form

Zðx,xÞ�  ¼ Z0ðx,xÞ
� þ K x� eð Þ½ � � Z

0
0 e,xð Þ

n o
¼ ½U x,xð Þ�fCg, (30)

with the matrices introduced

½U x,xð Þ� ¼ G0 x,xð Þ þ K x� eð ÞG0
0 x,xð Þ

h i
; (31)
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½K
�
xÞ� ¼ ½GcðxÞ� : x > 0;

0½ � : x � 0;
½K0

�
x
�
� ¼ ½G0

cðxÞ� : x > 0;
0½ � : x � 0:

��

By similar way one can obtain general solution for free vibration of the beam with multiple
cracks in the form (30) with

½U
�
x,xÞ� ¼ ½G0

�
x,xÞ� þ

Xn

j¼1
½Kðx� ejÞ� � ½Mj�; ½Mj� ¼ ½G0

0

�
ej,x

�
� þ

Xj�1

k¼1
½G0ðej � ekÞ� � ½Mk�:

Thus, expression (30) is general solution for free vibration of cracked FGM beam with piezo-
electric layer, that will be used for free vibration analysis of the beam in different cases of bound-
ary conditions as following. Namely, for simply supported beam with boundary conditions

U 0ð Þ ¼ W 0ð Þ ¼ M 0ð Þ ¼ U Lð Þ ¼ W Lð Þ ¼ M Lð Þ ¼ 0

with M xð Þ ¼ B�
12@xU xð Þ � B�

22@xH xð Þ, one gets

½B xð Þ� Cf g ¼ 0, (32)

where

B xð Þ½ � ¼ ½BSS xð Þ� ¼

a1
b1
m1

a2
b2
m2

a3
b3
m3

a1
�b1
�m1

a2
�b2
�m2

a3
�b3
�m3

/11ðLÞ
/31ðLÞ
M1ðLÞ

/12ðLÞ
/32ðLÞ
M2ðLÞ

/13ðLÞ
/33ðLÞ
M3ðLÞ

/14ðLÞ
/34ðLÞ
M4ðLÞ

/15ðLÞ
/35ðLÞ
M5ðLÞ

/16ðLÞ
/36ðLÞ
M6ðLÞ

2
6666664

3
7777775

mj ¼ ðB�
12aj � B�

22Þkj, j ¼ 1, 2, 3; MjðLÞ ¼ B�
12/

0
1jðLÞ � B�

22/
0
2jðLÞ, j ¼ 1, 2, :::, 6;

/ij xð Þ,/0
ij xð Þ, i ¼ 1, 2, 3; j ¼ 1, 2, ::::, 6 are elements of matrices ½U x,xð Þ� and ½U0 x,xð Þ� defined

in (31). Therefore, frequency equation of the beam is

det½B xð Þ� ¼ 0,

positive roots of which give rise desired natural frequencies x1,x2,x3, :::: of simply supported
FGM beam with piezoelectric layer and cracks. For every given natural frequency xk, a normal-
ized of solution of Eq. (32) can be easily found as ð#1, :::,#6Þ that allow one to calculate corre-
sponding mode shape in the form

Uk xð Þ ¼ Ck a1#1e
k1x þ a2#2e

k2x þ a3#3e
k3x þ a1#4e

�k1x þ a2#5e
�k2x þ a3#6e

�k3x
� �

;

Hk xð Þ ¼ Ck #1e
k1x þ #2e

k2x þ #3e
k3x þ #4e

�k1x þ #5e
�k2x þ #6e

�k3x
� �

; (33)

Wk xð Þ ¼ Ck b1#1e
k1x þ b2#2e

k2x þ b3#3e
k3x � b1#4e

�k1x � b2#5e
�k2x � b3#6e

�k3x
� �

,

where arbitrary constant Ck can be obtained from a chosen mode shape normalization, for
instance,

max
x

Wk xð Þ
�� �� ¼ 1:

Using the mode shape, it can be calculated so-called hereby modal sensor output (MSO)
charge generated in the piezoelectric layer as

Qk ¼ ðbh13=bp33Þ
ðL
0

U
0
k xð Þ � hH

0
k xð Þ=2

h i
dx ¼
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¼ ðbh13=bp33Þ
ðe
0

U
0
k xð Þ � hH

0
k xð Þ=2

h i
dxþ

ðL
e

U
0
k xð Þ � hH

0
k xð Þ=2

h i
dx

( )
¼

¼ ðbh13=bp33Þ
�

Uk Lð Þ � Uk 0ð Þ � c1U
0
x eð Þ

h i
�
�
h=2

�
Hk Lð Þ �Hk 0ð Þ � c2H

0
x eð Þ

h i	
, (34)

where c1, c2 are crack magnitudes defined above in Eq. (23). This modal sensor output will be
numerically examined below mutually with natural frequencies and mode shapes of FGM beam
with piezoelectric layer in dependence of crack location and depth.

4. Numerical results and validation

Consider an FGM beam bonded by a piezoelectric layer as shown in Figure 1 with the following
properties

Lb ¼ Lp ¼ L ¼ 1m; b ¼ 0:1m; hb ¼ L=10;

Et ¼ 390MPa, qt ¼ 3960kg=m3, lt ¼ 0:25;Eb ¼ 210MPa, qb ¼ 7800kg=m3, lt ¼ 0:31;

Cp
11 ¼ 69:0084GPa, Cp

55 ¼ 21:0526GPa, qp ¼ 7750kg=m3, h13 ¼ �7:70394� 108V=m:

First, natural frequency parameters kk ¼ xkðL2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
qb=Eb

p
, k ¼ 1, 2, :::, 5 are computed for

relative thickness of piezoelectric layer hp=hb varying from 0 to 1 in various slenderness ratio
Lb=hb and material grading index n.

The dimensionless natural frequencies obtained for simply supported intact beam are shown
in Tables 1 and 2 where the frequencies given in Su and Banerjee 2015 for FGM beam without
piezoelectric layer are also presented. Comparing the latter results with those obtained in the pre-
sent study with hp ¼ 0 shows a good agreement. Furthermore, variation of the natural frequen-
cies versus piezoelectric layer thickness observed in the Tables 1 and 2 demonstrates exactly the
fact that was found in Khiem, Hai and Huong (2020) such as: natural frequencies of FGM beam
are first decreasing then increasing with growing thickness of piezoelectric layer. So, the

Table 1. Frequency parameter k ¼ xðL2=hÞ ffiffiffiffiffiffiffiffiffiffiffi
qb=Eb

p
of SS-beam for various thickness of piezoelectric layer and slenderness

ratio Lb=hb with material gradient index n¼ 2.

L/h S&B1

Thickness ratio (hp=hb)

Mode no.0 0.1 0.2 0.3 0.5 0.8 1.0

5 3.390 3.3309 3.2692 3.2562 3.2825 3.4193 3.7344 3.9644 1
11.740 11.5403 11.1982 10.9848 10.8701 10.8345 10.9677 10.9426 2
19.479 19.3733 18.6362 17.9243 17.2200 15.8054 13.7393 12.6102 3
22.387 22.0386 21.2443 20.6727 20.2772 19.8542 19.6831 19.3017 4
33.912 33.4451 32.1182 31.1010 30.3348 28.3738 22.3316 20.0871 5

10 3.551 3.4878 3.4391 3.4463 3.5005 3.7159 4.2049 4.5837 1
13.561 13.3229 13.0637 12.9806 13.0362 13.4377 14.4093 15.1185 2
28.544 28.0555 27.3652 27.0203 26.9446 27.3438 28.6153 27.9506 3
38.958 38.9090 37.2752 35.8374 34.5478 32.3022 29.5240 29.5703 4
46.941 46.1729 44.8284 44.0161 43.6156 43.6458 44.6972 45.5729 5

20 3.5957 3.5315 3.4870 3.5010 3.5643 3.8073 4.3637 4.8077 1
14.202 13.9511 13.7439 13.7372 13.8932 14.5677 16.1230 17.3268 2
31.319 30.7718 30.2546 30.1695 30.4323 31.7158 34.7137 36.9909 3
54.220 53.2913 52.2522 51.9119 52.1163 53.6065 56.2525 55.7982 4
77.917 77.9014 74.5954 71.7766 69.3396 65.3857 62.0291 62.9888 5

30 3.6042 3.5398 3.4962 3.5114 3.5767 3.8252 4.3958 4.8541 1
14.334 14.0799 13.8853 13.8968 14.0772 14.8205 16.5357 17.8880 2
31.950 31.3899 30.9273 30.9222 31.2908 32.8653 36.5016 39.3333 3
56.077 55.1111 54.2191 54.0984 54.5976 56.9407 62.3101 66.2509 4
86.244 84.7885 83.2903 82.9572 83.5559 86.7580 90.9312 87.5998 5

1Su and Banerjee 2015.
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agreement of the results obtained in this study for the case of uncracked FGM beam compared to
the earlier published ones is adequate to validate the above proposed theoretical development.

4.1. Natural frequencies and mode shapes of cracked FGM beam with piezoelectric layer

As one of the fundamental dynamic characteristics of a structure, natural frequencies represent
both the structure stiffness and mass distribution and any change in stiffness or mass of an elastic
structure is vitally leading to variation of natural frequencies. Therefore, natural frequencies have
been acknowledged as an efficient indicator for structural health monitoring, especially, in struc-
tural damage detection using the nondestructive technique. In the structural damage detection
such as crack identification using the natural frequency-based method, measurements of natural
frequencies are usually performed by using the conventional modal testing technique. While, the
lumped sensors often reduce structure natural frequencies, the distributed piezoelectric sensors
may also increase the natural frequencies in dependence upon size of the sensors. So, effect of
distributed piezoelectric sensors on natural frequencies of cracked structures is important infor-
mation for the structural crack detection from measured natural frequencies. Effect of piezoelec-
tric patch on natural frequencies of undamaged FGM beam were studied in Khiem, Hai and

Table 2. Frequency parameter k ¼ xðL2=hÞ ffiffiffiffiffiffiffiffiffiffiffi
qb=Eb

p
of SS-beam for various thickness of piezoelectric layer and material gradi-

ent index (n) with slenderness ratio Lb=hb ¼ 10:

n S&B1

Thickness ratio (hp=hb)

Mode no.0 0.1 0.2 0.3 0.5 0.8 1.0

0.1 5.0001 4.9977 4.7446 4.5982 4.5326 4.5757 4.9095 5.2269 1
19.136 19.1228 18.0545 17.3675 16.9592 16.7134 17.1478 17.6743 2
40.385 40.3570 37.8771 36.1858 35.0671 33.9903 33.9840 34.3554 3
56.379 56.3731 52.3509 49.0886 46.3555 41.9528 36.9877 34.4557 4
66.608 66.5611 62.1356 58.9890 56.7733 54.2305 53.0524 53.0788 5

0.2 4.7348 4.7243 4.5141 4.3987 4.3567 4.4333 4.7976 5.1276 1
18.118 18.0772 17.1789 16.6146 16.2991 16.1827 16.7297 17.2997 2
38.240 38.1525 36.0483 34.6295 33.7175 32.9303 33.1794 33.5028 3
53.361 53.5455 50.0038 47.0891 44.6188 40.5881 35.9746 33.7527 4
63.075 62.9317 59.1515 56.4747 54.6155 52.5701 51.8254 52.0219 5

0.5 4.2432 4.2086 4.0718 4.0114 4.0120 4.1502 4.5708 4.9240 1
16.235 16.1021 15.4951 15.1474 14.9984 15.1171 15.8680 16.5140 2
34.261 33.9801 32.5199 31.5828 31.0435 30.7871 31.5069 31.6420 3
48.044 48.0050 45.2957 43.0046 41.0196 37.6991 33.7845 32.2653 4
56.502 56.0479 53.3753 51.5314 50.3178 49.1901 49.2525 49.7644 5

1.0 3.8586 3.8004 3.7156 3.6950 3.7271 3.9111 4.3732 4.7427 1
14.755 14.5331 14.1315 13.9400 13.9126 14.2022 15.0944 15.7871 2
31.110 30.6491 29.6432 29.0550 28.7896 28.9250 29.9851 29.7951 3
43.242 43.1884 41.0914 39.2787 37.6791 34.9455 31.6388 30.8712 4
51.256 50.5213 48.6317 47.3940 46.6587 46.2166 46.8768 47.6156 5

2.0 3.551 3.4878 3.4391 3.4463 3.5005 3.7159 4.2049 4.5837 1
13.561 13.3229 13.0637 12.9806 13.0362 13.4377 14.4093 15.1185 2
28.544 28.0555 27.3652 27.0203 26.9446 27.3438 28.6153 27.9506 3
38.958 38.9090 37.2755 35.8374 34.5478 32.3022 29.5240 29.5703 4
46.941 46.1729 44.8284 44.0161 43.6156 43.6458 44.6972 45.5729 5

5.0 3.2608 3.2251 3.2037 3.2323 3.3034 3.5427 4.0507 4.4350 1
12.434 12.3013 12.1500 12.1489 12.2665 12.7468 13.7614 14.4681 2
26.122 25.8533 25.4021 25.2422 25.3092 25.9001 27.3075 26.0857 3
35.052 35.0281 33.7532 32.6122 31.5740 29.7346 27.4146 28.2954 4
42.873 42.4555 41.5224 41.0330 40.8855 41.2645 42.5836 43.5408 5

10 3.0959 3.0805 3.0730 3.1133 3.1941 3.4484 3.9696 4.3584 1
11.805 11.7476 11.6514 11.6949 11.8481 12.3778 13.4266 14.1381 2
24.799 24.6834 24.3531 24.2919 24.4391 25.1448 26.4425 25.2175 3
33.371 33.3619 32.2232 31.1959 30.2547 28.5752 26.6432 27.6582 4
40.700 40.5218 39.7921 39.4708 39.4610 40.0391 41.5217 42.5328 5

1Su and Banerjee 2015.
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Huong (2020), in the present subsection the crack-induced variations, usually treated as sensitivity
to crack, of natural frequencies are examined for FGM beam with piezoelectric layer. Namely, the
ratio of natural frequencies of cracked beam to those of intact one is computed as function of
crack position along the beam span for various crack depth (a/h), material gradient index (n) and

Figure 3. Variation of first three natural frequencies caused by crack position and depth.
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Figure 4. Variation of first three natural frequencies versus crack position in various material gradient index n.
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Figure 5. Variation of first three natural frequencies versus crack position in various thickness of piezoelectric layer.
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piezoelectric layer (hp=hb). The ratios or dimensionless frequencies of three lowest modes
obtained for simply supported (SS-) beam are shown in Figures 3–5. It can be observed from the
Figures that natural frequency sensitivity to crack position and depth (Figure 3) for FGM beam
with piezoelectric layer is similar to that of homogeneous beam or FGM beam (Khiem, Huyen,
and Long 2017) without piezoelectric layer. The increasing material gradient index n reduces the
natural frequency sensitivity to crack independently upon presence of the piezoelectric layer
(Figure 4).

Graphics presented in Figure 5 show that thickness of the piezoelectric layer is less affecting
the natural frequency sensitivity to crack in comparison with the crack depth and material gradi-
ent index, it may slightly reduce the sensitivity in vicinity of the positions on beam where natural
frequencies are most sensitive to crack. Mode shapes of five natural mode shapes were computed
for uncracked FGM beam without piezoelectric layer and cracked FGM beam with piezoelectric
layer and are presented in Figures 6 and 7. Comparison of the obtained mode shapes allows one
to conclude that material grading, presence of crack and piezoelectric layer do not change mode
shapes of the beam.

4.2. Modal sensor charge of piezoelectric layer bonded to cracked FGM beam

Likely to that carried out above, in this subsection, crack-induced variations of the so-called
modal sensor charge determined by expression (30) for lowest natural modes of simply supported
beam are numerically examined in dependence upon crack parameters, material gradient index
and piezoelectric layer thickness. First, the modal sensor outputs are computed as function of
crack position for various crack depth and results of computation are depicted in Figure 8. It is
observed insignificant sensor output charge for the second natural mode compared to the first
and third modes, especially, in case of uncracked beam and the charge is very slightly altered due
to crack appeared to the beam. This may be caused by two facts: (1) the sensor has the same
length as the beam and (2) boundary conditions of the beam are symmetric. Moreover, it is note-
worthy that there are exist positions on beam, crack appeared at which makes no effect on the
modal charge. Such critical positions on beam can be also called node of modal sensor charge
likely that of natural frequencies. It can be exactly observed (k-1) nodes for sensor output of k-th

Figure 6. Five lowest mode shapes of uncracked beam without piezoelectric layer.
(A1 – first axial vibration mode; B1-B4 – Lowest four flexural vibration modes)
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mode like those of mode shapes itself (see Figures 6 and 7). The observed nodes of third sensor
outputs demonstrate the fact that crack appeared between the nodes reduces the output charge of
full-length piezoelectric sensor and crack appeared outside the node segment increases the output
charge. This is an efficient indicator or crack localization by using modal sensor charge.
Observation of the graphs given the Figures 9 and 10 reveals a fact that decreasing material gradi-
ent index and increasing thickness of piezoelectric layer both lead to amplify the modal sensor
outputs. Moreover, asymmetry of graphics representing variation of sensor output charge gets to
be stronger with increasing thickness of piezoelectric layer (Figure 10). This can be explained by
the fact that since the charge is calculated from both axial and bending vibration mode shapes, as
shown in Eq. (34), its variation must be dependent upon the mode shapes, their derivatives and
the interaction between the vibration modes. The different variation of axial and flexural vibra-
tion characteristics should lead to complicate variation of the charge.

5. Conclusions

Thus, in the present study, there is conducted a model of cracked FGM beam bonded full-length
with piezoelectric layer based on the Timoshenko beam theory, power law of material grading
and double spring model of open transverse crack. The established governing equations of the
smart FGM beam show that piezoelectric layer bonded to a beam makes an important contribu-
tion to the coupling of axial and flexural vibration modes. So that axial vibration modes may
have an effect on either mechanical or electrical behavior of the coupled beam structure.

There has been obtained general solution for free vibration of the coupled beam with crack
that allows fruitfully computing not only the modal parameters such as natural frequencies and
mode shapes of the beam structure but also the output charge under natural vibration modes
called herein modal sensor charge of piezoelectric layer. Moreover, an expression of the modal
sensor charges was obtained explicitly with respect to the crack parameters that provides a useful
tool for crack detection from measured modal sensor charges.

The normalized natural frequencies and modal sensor outputs (the ratios of cracked to intact)
have been thoroughly examined as function of crack position (called herein crack-induced

Figure 7. Five lowest mode shapes of cracked beam with piezoelectric layer.
(A1 – first axial vibration mode; B1-B4 – Lowest four flexural vibration modes)
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variation) in dependence on crack depth, material gradient index and thickness of the piezoelec-
tric layer. The completed modal analysis enables to make following concluding remarks:

1. Variation of natural frequencies is growing with increasing crack depth, decreasing material
gradient index and thickness of piezoelectric layer.

2. Modal sensor charge is amplified by decreasing material gradient index and increasing thick-
ness of piezoelectric layer, but crack depth may increase or decrease the modal sensor charge
in dependence on where the crack is located.

3. There exist positions on the beam, crack appeared at which does not change both natural fre-
quency and modal sensor charge of a certain mode that are called nodes of the natural fre-
quency and modal sensor charge.

Figure 8. Crack-induced variation of modal sensor charge of first and third modes in various crack depth.
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4. Both material gradient index and piezoelectric layer thickness make no effect on natural
mode shapes of the beam and insignificant charge generated in the full-length piezoelectric
sensor due to natural vibration of second mode in simply supported beam.

Similar analysis could be carried out for beam with other boundary conditions and the
obtained results mentioned above can be efficiently used for solving the crack detection in FGM
beam by using piezoelectric sensors. Especially, measuring the sensor output charge is more easily
than modal parameters such as natural frequencies and mode shapes or even than EMI measure-
ments. Hence, the analysis of modal sensor charge in dependence on crack parameters completed

Figure 9. Crack-induced variation of modal sensor charge of first and third modes in various material gradient index n.
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in this study is the essential step to use smart sensor for structural health monitoring of compos-
ite structures in the practice. Nevertheless, the results obtained in this study are limited to apply
for beam-like structures such as stepped and multispan beams or frame that is composed from
beam elements. In the case the dynamic stiffness method should be applied for assembling all the
beam elements with piezoelectric layer. It might be used for health monitoring only that large
machinery or equipment with beam elements.
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Figure 10. Crack-induced variation of modal sensor charge of first and third modes in various thickness of piezoelectric layer.
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