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Abstract
One of the common problems in strawberry (Fragaria × ananassa) micropropagation is the vitrification phenomenon (suc-
culent plantlets, brittle stems, yellow leaves, etc.) leading to the reduction of plantlets quality and low survival rate in the 
greenhouse. In this study, the effects of silver nanoparticles (AgNPs) on explant disinfection, in vitro growth (shoot multipli-
cation, and root formation), runner formation as well as ethylene accumulation during micropropagation of strawberry were 
investigated. The results showed that leaf explants treated with 200 mg/L AgNPs solution for 20 min was more effective in 
explant disinfection and shoot regeneration than using 1 g/L  HgCl2. In addition, AgNPs stimulated the growth of shoot and 
plantlet and as well shortened the duration of root formation (4 days) as compared to those in control without AgNPs during 
micropropagation. Besides, AgNPs reduced the ethylene gas accumulation in the culture’s vessels of shoots (0.66 ppm) and 
plants (0.06 ppm) compared to controls (1.77 ppm; 0.15 ppm; respectively). Moreover, AgNPs combination with culture 
period (5; 10 or 15 days) effect root formation stage and acclimatization in the greenhouse. The plantlets that cultured on 
MS medium supplemethed with 0.5 mg/L AgNPs during 10 days showed higher survival rate (93.33%) after 15 days as well 
as runner formation per plant (8.00 runners) after 60 days in greenhouse than those in control.

Key message 
AgNPs improved explant disinfection and in vitro growth. AgNPs improved runner formation in the greenhouse. AgNPs 
limited ethylene accumulation during micropropagation.

Keywords Ethylene accumulation · Fragaria × ananassa · Runner · Silver nanoparticles · Vitrification phenomenon

Abbreviations
AgNPs  Silver nanoparticles
MS  Murashige and Skoog medium (1962)

Introduction

Micropropagation of strawberry (Fragaria × ananassa) is the 
appropriate method to produce a large number of homogene-
ous virus-free plants via meristem culture (Mir et al. 2010; 
Mozafari and Gerdakaneh 2012). In addition, stem nodes 
(Harugade et al. 2014), seeds (Mahmoud and Kosar 2014a, 
b) and leaves (Palei et al. 2017), etc. were also used as pri-
mary materials in the micropropagation of strawberry plants. 
Up to now, there are many studies on strawberry micropro-
pagation focused on plant materials (Jan et al. 2013), dis-
infectants (Abbas et al. 2017; Oo et al. 2018), plant growth 
regulators on callogenesis (Palei et al. 2017; Abbas et al. 
2017; Na et al. 2019), shoot regeneration (Palei et al. 2017) 
and root formation (Nam et al. 2016; Palei et al. 2017; Wafaa 
and Wahdan 2017).
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On the strawberry plants, mecury chlorite  (HgCl2) (Jan 
et al. 2013; Oo et al. 2018), hydroperoxide  (H2O2) (Munir 
et al. 2015), hypochlorite calcium (Ca(ClO)2) (Jan et al. 
2013; Abbas et al. 2017) were used to disinfect explants 
from microbial contamination, but the efficiency was not 
optimal and safe (Mihaljević et al. 2013) Therefore, finding 
a new disinfectant that is effective and safe is essential. In 
addition, strawberry shoots or plants grown in closed culture 
flasks with high humidity, low light, no supplemental  CO2, 
high sucrose and nutrient medium induce some abnormal 
phenomena (vitreous, yellowing, deciduous, browning, etc.) 
(Hdider and Desjardins 1993; Veilleux and Johnson 1998; 
Mir et al. 2019). One of the common problems in micropro-
pagated strawberry is the vitrification phenomenon (succu-
lent plantlets, brittle stems, yellow leaves, etc.) leading to 
reduced plantlets quality and survival rate in the greenhouse, 
because of the production and accumulation of ethylene gas 
in closed vessel cultures during growth and development 
(Kevers and Gaspar 1985; Nehra et al. 1992; Hdider and 
Desjardins 1993; Veilleux and Johnson 1998; Palei et al. 
2015). In order to overcome disadvantages, such as increase 
growth and development to improve plantlets quality, some 
studies used aeration vessels or added activated charcoal to 
the culture medium (Hdider and Desjardins 1993; Mir et al. 
2019); however, the problems have not been completely 
solved.

In recent studies, AgNPs have been used to disinfect 
explants of seaweed Kappaphycus striatus (Mo et  al. 
2020), reduce microbial infection in microponic medium 
(Tung et al. 2018); overcome some abnormal phenomena 
and increase in vitro growth of Stevia rebaudiana Bertoni 
(Ramírez-Mosqueda et al. 2019), Pennisetum alopecuroides 
(Parzymies et al. 2019), lilies (Salachna et al. 2019), banana 
(El-Mahdy et al. 2019), Caralluma tuberculata (Ali et al. 
2019), Rosa hybrida L. ‘Baby Love’ (Ngan et al. 2020).

In this study we used AgNPs as an explant disinfectant 
to replace  HgCl2, and show improvement in the the in vitro 
growth of shoots and plants, as well as assess the variation 
of ethylene gas content in culture flasks. In addition, this 
study also showed the optimal culture period combined with 
AgNPs supplementation in the culture medium on rootting 
stages to the acclimatization, growth and runner formation 
in greenhouse condition.

Materials and methods

Plant material

Three-month-old ex vitro leaves of Fragaria × ananassa 
plants that were grown in the greenhouse of Tay Nguyen 
Institute of Scientific Research (Dalat, Vietnam), were used 
in the study.

AgNPs solution preparation

Aqueous solution was prepared with AgNPs of average 
size less than 20 nm consists of silver ion source  (AgNO3), 
stabilizator (β-chitozan), and reducing agent  (NaBH4). The 
AgNPs solution is set according to the ratio:  AgNO3 less 
than 1000 ppm, 250–300 ppm β-chitozan, 200 ppm  NaBH4, 
the ratio mol  [NaBH4]/[AgNO3] = ¼ and the dripping rate of 
 NaBH4 is 10–12 drops/min provided by the Institute of Envi-
ronmental Technology (Hanoi, Vietnam) (Chau et al. 2008).

Culture conditions

In vitro condition: The explants were cultured at 25 ± 2 °C 
with a 16 h photoperiod under fluorescent light (40–45 μmol 
 m−2  s−1) and humidity of 55–60%.

Ex vitro condition: The plantlets were grown in green-
house at 25 ± 2 °C during the day and 15 ± 2 °C at night, the 
average humidity of about 75–80% and natural light with 
shade 40%.

Effects of AgNPs on explant disinfection and shoot 
regeneration

Three-month-old ex vitro leaves were washed under run-
ning tap water, then soaked in 70% alcohol for 30 s, washed 
three times with sterile distilled water, and disinfected with 
AgNPs solution (50; 100; 200; 500 mg/L). The exposure 
times were 5; 10; 15; 20; 30 min. The control treatments 
were sterilized with 1 g/L  HgCl2 for 4 min (Oo et al. 2018). 
These disinfected leaf explants were cut into circles (1 cm in 
diameter) and transplanted on Murashige and Skoog (1962) 
(MS) medium supplemented with 1 mg/L TDZ and 0.1 mg/L 
IBA, 30 g/L sucrose, and 8 g/L agar (Sutter et al. 1997) and 
assessment of shoot regeneration after 45 days of culture.

Effects of AgNPs on shoot multiplication

In vitro shoots derived from regenerated shoots (2.0 cm in 
height and three leaves) were cultured on MS medium sup-
plemented with 0.5 mg/L benzyladenine (BA) (Danial et al. 
2016) and AgNPs (0.2; 0.4; 0.6; 0.8; 1.0 mg/L). Control was 
the medium without AgNPs. The effects of AgNPs on shoot 
multiplication were obtained after 30 days of culture.

Effects of AgNPs on root formation

In vitro shoots with 3.0 cm in height and four leaves were 
cultured on root formation medium including MS medium 
supplemented with 0.02 mg/L α-naphthalene acetic acid, 
30 g/L sucrose, 1 g/L activated charcoal, 8 g/L agar (Haddadi 
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et al. 2010), and AgNPs (0.25; 0.5; 1.0; 1.0; 1.5; 2.0 mg/L). 
Control was the medium without AgNPs. The root formation 
was recorded after 15 days of culture.

Ethylene accumulation content in culture vessels 
during shoot multiplication and root formation 
stages

Culture vessels of 15-day-old shoots and 30-day-old plantls 
derived from with/without AgNPs were used to measure 
the ethylene gas concentration by gas chromatography with 
flame ionization probes (Cristescu et al. 2012). Gas chroma-
tography was performed using the Varian CP-3380 chroma-
tograph (Walnut Creek, CA, USA).

AgNPs combination with culture period on root 
formation and acclimatization

Plantlets derived from optimal AgNPs and control treatment 
after 5; 10 or 15 days of culture were collected, washed, 
planted in blisters, and placed under greenhouse conditions. 
Plantlets are watered twice per day in the 1st week after 
planting, then watered once per day in the early morning, 
to avoid excessive stagnant water. Survival rate and growth 

indicators were obtained to assess the quality of plantlet 
derived from AgNPs treatments.

Statistical analysis

Each treatment was repeated three times with ten vessels/
treatment (three explants/vessel). Data were processed and 
analyzed by Microsoft Excel 2010 and SPSS 16.0 software 
according to Duncan’s and LSD’s tests with α = 0.05 (Dun-
can 1955).

Results and discussion

Effects of AgNPs and  HgCl2 on explant disinfection

The results showed that the ability of AgNPs to explant dis-
infection and shoot regeneration at different concentrations 
and treatment times differed from that of  HgCl2 treatment 
after 45 days of culture (Table 1).

The leaves disinfected with 50 mg/L AgNPs showed 
100% contamination rate only after 5 days of culture. 
However, all explants treated for a short time (5 min) were 
contaminated; and the leaves became necrotic at a longer 

Table 1  Effect of AgNPs and  HgCl2 on explant disinfection after 45 days of culture

*Different letters (a, b,…) in the same column represent statistically significant differences at α = 0.05 (Duncan’s test)

Disinfection agent Concentration 
(mg/L)

Exposure 
time (min)

Contamination 
rate (%)

Shoot regenera-
tion rate (%)

No. of shoots Characteristic of explant

Total  > 1.5 cm in 
height

AgNPs 50 5 100.00a* – – – Contamination
10 100.00a – – –
15 100.00a – – –
20 100.00a – – –
30 100.00a – – –

100 5 100.00a – – – Contamination
10 73.33e 22.22d 10.00e 0.00c Small shoot (< 0.5 cm)
15 63.33de 30.00cd 12.33de 0.00c
20 60.00de 33.33cd 11.33de 0.00c
30 – – – – Necrosis

200 5 100.00f – – – Contamination
10 60.00de 34.44cd 10.67de 0.00c Large shoot
15 37.78bc 56.67ab 15.67bc 4.00b
20 28.89ab 64.44a 21.00a 6.67a
30 – – – – Necrosis

500 5 100.00f – – – Contamination
10 48.88cd 45.55ab 13.00cd 0.00c Large shoot
15 36.67abc 61.11ab 13.33cd 4.00b
20 22.22a 57.78ab 19.00a 4.67b
30 – – – – Necrosis

HgCl2 1000 4 49.99cd 46.67abc 16.33b 0.00c Small shoot
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time (30 min) (Table 1). The results suggested low con-
centration of AgNPs (50 mg/L) or a short-time (5 min) 
and long-time (30 min) are not affective in the steriliza-
tion process. Increasing exposure time and concentra-
tion of AgNPs significantly reduced the contamination 
rate, the lowest rate was obtained at 500 mg/L AgNPs in 
20 min (22.22%), followed by 200 mg/L AgNPs in 20 min 
(28.29%). The contaminations were lower than those 
treated with  HgCl2 (49.99%).

In addition, leaf samples disinfected with 200 mg/L 
AgNPs for 20 min yielded higher biomass of callus induc-
tion than  HgCl2 treated after 21 days of culture (data not 
shown). In addition, the shoot regeneration rate (64.44%), 
the number of shoots/explant (21 shoots), the number 
of shoots with a size larger than 1.5 cm (6.67 shoots) 
observed in treatment with 200 mg/L AgNPs for 20 min 
after 45 days of culture were higher compared to other 
treatments and controls (Table 1).

HgCl2 and Ca(ClO)2 are commonly used to disinfect 
explants and their effectiveness depends on the explant 
source (stem, petiole, stem, shoot-tip), exposure time treat-
ment, and plant species (Oo et al. 2018; Bharti et al. 2018; 
Shukla et al. 2019); however, the disinfection efficiency 
and survival rate are low (less than 75%) because they 
have strong detergent and antimicrobial agent on fungal 
and bacterial cell walls resulting in low shoot regeneration 
(Mihaljević et al. 2013).

These results show that changes in AgNPs concentra-
tion (50; 100; 200; 500 mg/L) as well as exposure time 
(5–30 min) significantly affect the sterilization and regen-
eration of shoots. AgNPs used as disinfectant can easily 
move and penetrate through the cell layers and accumu-
late inside the cells of the explants via phloem, xylem 
(Kim et al. 2007; Navarro et al. 2008) and is metabolized 
and used to support metabolic processes within the cell, 
thereby having a positive impact on plant growth (Navarro 
et al. 2008). The results recorded in this study demonstrate 

that AgNPs are potential disinfectants and can replace 
common disinfectants.

Effect of AgNPs on shoot multiplication

Shoot multiplication efficiency increased proportional to the 
increase of AgNPs (0–0.2 mg/L) and reached the highest 
value in 0.2 mg/L AgNPs treatment such as number of shoots 
(12.67), shoot height (3.93 cm), shoots higher than 2.0 cm in 
height (8.67 shoots), dry weight (89.42 mg) and total chlo-
rophyll (37.3 nmol/cm2) (Table 2). However, shoot regen-
eration efficiency was decreased at AgNPs concentrations 
higher than 0.2 mg/L, meanwhile, the number of roots, root 
length, leaf length and leaf width were increased (Fig. 1a). 
In addition, the dry matter rate (4.95–7.81%) increased 
proportional to the increase in AgNPs (0–0.6 mg/L), this 
result proved that AgNPs increased dry matter rate and 
reduced water accumulation in shoots. Sharma et al. (2012) 
showed in their studies on Brassica juncea cultured on agar 
medium supplemented with 50 mg/L AgNPs increased the 
fresh weight, root length, shoot height, chlorophyll content 
of seedlings compared to control, but at high AgNPs con-
centration the growth was reduced. The effect of AgNPs at 
low concentrations (1–5 mg/L) in increasing shoot multi-
plication on Bananas was also recorded (El-Mahdy et al. 
2019). Moreover, Ngan et al. (2020) also showed that AgNPs 
inhibited the activity of ethylene, increased the dry matter 
accumulation, thereby reducing the vitrification phenom-
enon in rose micropropagation.

Effect of AgNPs on root formation

The rooting rate reached 100% in treatments with/without 
AgNPs; however, rooting ability was earlier nearly 4 days 
at 0.5 mg/L AgNPs as compared to control without AgNPs 
(Fig. 2). Harugade et al. (2014) indicated strawberry root 
formation on medium supplemented with plant growth 
regulators after 7 days of culture. However, the results of 

Table 2  Effect of AgNPs on the shoot multiplication after 30 days of culture

*Different letters (a, b,…) in the same column represent statistically significant differences at α = 0.05 (Duncan’s test)
**Measured by chlorophyll meter (SPAD-502, Minolta Co., Ltd., Osaka, Japan)

AgNPs 
(mg/L)

No. of shoots Shoot height 
(cm)

Fresh weight 
(g)

Dry weight 
(mg)

Dry mat-
ter rate 
(%)

Leaf length 
(cm)

Leaf width 
(cm)

Total 
chlorophyll 
(nmol/
cm2)**

Total  > 2 cm in 
height

0 5.67d* 3.67de 3.43c 1315.40a 65.16b 4.95b 0.53d 0.47c 34.03c
0.05 8.67c 4.33cd 3.53bc 1193.17bc 83.00a 6.96a 0.53d 0.53c 35.43abc
0.10 10.33b 6.00bc 3.70b 1235.97ab 86.13a 6.97a 0.67cd 0.70b 36.80ab
0.20 12.67a 8.67a 3.93a 1260.87ab 89.42a 7.09a 0.77c 0.73b 37.30a
0.40 9.67bc 6.33b 3.63b 1130.43c 84.76a 7.05a 0.97b 0.77b 34.87bc
0.60 2.33e 2.00e 3.36c 408.10d 31.86c 7.81a 1.17a 0.93a 31.47d
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our study showed that adding AgNPs to the culture medium 
shortened the root induction time (4.33 days) as compared to 
those in control without AgNPs (7.67 days), and the growth 
of 10-day-old plants derived from 0.5 mg/L AgNPs was 
similar to 15-day-old plant in the control. The results of this 
study show that it is possible to shorten the rooting time. 
This lead to saving eectricity, the costs of maintaining the 
plants, shortening the propagation time. Hence saving pro-
duction costs and increasing production efficiency.

In the control treatment, the plant growth was lower 
than that of treatments supplemented with AgNPs (Fig. 1b, 
Table  3). Plant growth increased in proportion to the 
increase in AgNPs concentrations (0–0.5 mg/L); reached 
the highest 0.5 mg/L AgNPs treatment. However, plan 
growth slowed at higher than 0.5 mg/L AgNPs, (except 
for root length) (Table 3). Mahmoud and Kosar (2014a, b) 
reported that strawberry shoots cultured on MS medium 
supplemented with 4 mg/L  AgNO3 (2.56 mg/L  Ag+) had 
rooting rate (100%), plant height (5.3 cm) and number of 
roots (1.5 roots) reached the highest. This may be probably 

Fig. 1  Effect of AgNPs on the shoot multiplication stage (30-day-old) and rooting stage (15-day-old). Bar: 2 cm

Fig. 2  AgNPs and control treatment on rooting time
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that  Ag+ may not be directly involved in plant growth 
but may have indirect effect through ethylene. However, 
AgNPs (1–100 nm) have shown to be more effective and 
active than ions  (Ag+) (Yin et al. 2011), so AgNPs are 
being applied in many fields of science and technology. 
In micropropagation, AgNPs may be reduced infection of 
fungi, bacteria, etc. (Arab et al. 2014; Spinoso-Castillo 
et al. 2017) and hence improved seedling growth, plant 
development and quality (Sarmast et al. 2015; Thao et al. 
2015). In this study, the AgNPs concentration for root-
ing stage was only 0.5 mg/L AgNPs, which gave optimal 
results (lower than  AgNO3). Thus, the use of AgNPs has 
been effective in rooting and plant growth as well as earlier 
root induction times.

In the 2.0 mg/L AgNPs treatment, the results showed 
that the root morphology (almost browning) was different 
from the other treatments with lower AgNPs concentra-
tions. This might be because the high AgNPs concentra-
tion may reduce the ability to absorb nutrients and water of 
the root system, resulting in slower plant growth than other 
treatments. Syu et al. (2014) showed that high AgNPs con-
centration causes oxidative stress that leads to an increase 
levels of ROS in the roots.

The ethylene gas accumulation in culture vessels 
at shoot multiplication and root formation stages

The ethylene content significantly decreased when AgNPs 
were added to the culture medium and was always lower 
than that of the control treatment during shoot multiplication 
after 30 days of culture (Fig. 3a). In the 0.2 mg/L AgNPs 
treatment, the ethylene gas accumulation in the culture ves-
sel was lowest (0.66 ppm) and 2.68 times lower than the 
control (1.77 ppm).

Sarropoulou and Maloupa (2016) suggested that the addi-
tion of ethylene inhibitors  (CoCl2) to culture media increased 
the shoot formation of Sideritis raeseri, meanwhile, adding 
2 mg/L  AgNO3 increased cotton shoot multiplication (22.2 
shoots) after 3 weeks of culture (Kumar et al. 2016).

During the rooting stage, the ethylene gas accumulation in 
culture vessels is inversely proportional to the concentration 
of AgNPs added to the culture medium from 0 to 0.5 mg/L. 
Ethylene gas accumulation (0.06 ppm) at 0.5 mg/L AgNPs 
treatment was lower than those in others and control treat-
ments (0.15 ppm) (Fig. 3b). In addition, the plant growth 
and development in this treatment was higher (Table 3 
and Fig. 1). A high AgNPs concentrations (1.0–2.0 mg/L) 

Table 3  Effect of AgNPs on the rooting stage after 15 days of culture

*Different letters (a, b,…) in the same column represent statistically significant differences at α = 0.05 (Duncan’s test)

AgNPs (mg/L) Rooting 
rate (%)

Plant height 
(cm)

Fresh weight 
(mg)

Dry weight (mg) No. of roots Root length 
(cm)

No. of leaves Total 
chlorophyll 
(nmol/cm2)

0 100 4.60d 157.67d 14.00d 4.67b 0.50f 6.00b 31.53d
0.25 100 4.70cd 185.67c 27.00c 5.67ab 1.33e 6.67ab 33.47c
0.50 100 5.60a 242.67a 34.67a 6.67a 3.40b 7.67a 39.30a
1.00 100 5.67a 212.67b 31.33b 5.67ab 3.67a 6.67ab 36.63b
1.50 100 5.27b 197.00c 27.00c 4.67b 2.43c 6.67ab 32.60c
2.00 100 4.93c 161.33d 25.67c 2.33c 2.23d 7.00ab 31.50d

Fig. 3  Ethylene content in culture vessel’s of 30-day-old shoots and 15-day-old plants. a 30-day-old shoots. b 15-day-old plants
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increased the ethylene gas accumulation in culture vessels 
and inhibited plant growth. The plants showed yellowing 
and curly leaves. Plant height, root length and the number 
of roots decreased.

The result of this study showed the role of AgNPs in 
inhibiting the formation and activity of ethylene gas. AgNPs 
have the ability to inhibit the activity of ethylene gas by 
blocking the binding of ethylene to receptors in plant cells; 
which prevent the formation and activity of ethylene gas 
(Razavizadeh and Rostami 2015). Previous studies showed 
that the accumulation of ethylene gas had been significantly 
reduced by using  AgNO3,  Ag2SO4 as inhibitors in micropro-
pagation of cherry (Sarropoulou and Maloupa 2016), cotton 
(Kumar et al. 2016). In addition, aminoethoxy vinyl glycine, 
silver thiosulfate, and sodium nitroprusside have been used 
for stimulation of shoot formation and inhibiting ethylene 
effect on yellowing of leaves in roses (Park et al. 2016). The 
use of AgNPs to limit the adverse effects of ethylene on 
plants is still limited, only reported for Swertia chirata (Saha 
and Gupta 2018), rose (Ngan et al. 2020).

AgNPs combination with culture period on root 
formation and acclimatization

In the control treatment, plant height, fresh weight, dry 
weight, number of roots, root length, number of leaves, 
and total chlorophyll also increased significantly over time 
(5–15 days). However, this increase was low in the 0.5 mg/L 
AgNPs supplemented treatment at the same time (Table 4). 
In 0.5 mg/L AgNPs treatment, fresh weigth, dry weigth, 
number of roots, root length outperformed the control and 
about twofold to over fourfold after 5, 10 and 15 days of 
culture (Table 4).

After 15 days cultivating in the greenhouse, the results 
showed that the survival rate (86.67–93.33%) in 0.5 mg/L 
AgNPs treatment was higher than those in control 
(26.67–73.33%) (Table 5 and Fig. 4a, c, e).

Corresponding to in vitro growth, plantlets derived from 
0.5 mg/L AgNPs had better growth and development than 
those in control treatments after 30 days in the greenhouse 
(Fig. 4b, d, f). Plant height, fresh weight, number of roots, 
root length, number of leaves, and total chlorophyll in 
0.5 mg/L AgNPs treatment were significantly higher than 
compared to the controls.

Results of this study also showed that AgNPs affected 
rooting ability and the development of runners in the 

Table 4  The combination of AgNPs and culture period on plant growth at rooting stage

*Different letters (a, b,…) in the same column represent statistically significant differences at α = 0.05 (Duncan’s test)

Culture period AgNPs Plant height (cm) Fresh weight 
(mg)

Dry weight (mg) No. of roots Root length (cm) No. of leaves Total 
chlorophyll 
(nmol/cm2)

5 0 3.83d* 87.33d 8.40f 0.33d 0.04e 4.67 c 35.00c
0.5 4.57b 146.67c 18.67c 4.33bc 0.80c 5.00c 41.40a

10 0 4.07c 94.33d 12.00e 3.67c 0.47d 5.33bc 35.73c
0.5 4.70b 161.33b 21.00b 5.33b 2.37b 6.00b 42.60a

15 0 4.60b 158.33b 14.00d 4.67bc 0.53d 6.00b 31.87d
0.5 5.63a 242.67a 34.67a 6.67a 3.53a 7.67a 39.13b

Table 5  The combination of AgNPs and culture period on rooting stage after 15 days in the greenhouse

*Different letters (a, b,…) in the same column represent statistically significant differences at α = 0.05 (Duncan’s test)

Culture period AgNPs Plant height (cm) Survival rate (%) Fresh weight 
(mg)

No. of roots Root length (cm) No. of leaves Total 
chlorophyll 
(nmol/cm2)

5 0 4.40e* 26.67c 165.00e 4.67b 4.27d 5.00c 30.87d
0.5 4.97c 86.67a 323.33c 8.33a 6.40b 7.33b 37.53bc

10 0 4.83d 60.00bc 201.67d 5.33b 5.50c 6.00c 36.03c
0.5 6.67a 93.33a 433.33a 8.67a 9.07a 7.67ab 38.77b

15 0 4.87cd 73.33b 201.67d 5.33b 4.37d 5.33c 36.67c
0.5 6.37b 90.00a 376.67b 9.33a 8.73a 8.67a 41.90a
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Fig. 4  The growth of planlet derived from combination of AgNPs and 
culture period in the greenhouse. Bar: 5 cm. a Plantlets derived from 
5  day-rooting after 15  days at the greenhouse. b Plantlets derived 
from 5  day-rooting after 30  days at the greenhouse. c Plantlets 
derived from 10 day-rooting after 15 days at the greenhouse. d Plant-

lets derived from 10  day-rooting after 30  days at the greenhouse. e 
Plantlets derived from 15 day-rooting after 15 days at the greenhouse. 
f Plantlets derived from 15  day-rooting after 30  days at the green-
house. 0: Control. 1 0.5 mg/L AgNPs

Table 6  The growth of runner derived from AgNPs and control after 60 days in the greenhouse

*Different letters (a, b,…) in the same column represent statistically significant differences at α = 0.05 (Duncan’s test)

Culture period AgNPs (mg/L) Runner time (day) Runner rate (%) No. of 
runner per 
plant

Runner

Runner 
height 
(cm)

Fresh weight (g) No. of leaves Total chloro-
phyll (nmol/
cm2)

5 0 45.67a 40.00d 1.33c 5.36c 2.75c 1.67b 35.13c
0.5 41.67b 78.33c 5.33b 7.98b 3.04bc 2.67ab 38.73b

10 0 41.33b 74.00c 4.67b 7.91b 3.09b 3.00ab 38.07b
0.5 36.67d 100.00a 8.00a 11.21a 3.55a 3.67a 40.37a

15 0 39.67c 88.33b 4.33b 8.15b 2.82bc 3.00ab 37.53b
0.5 38.67c 100.00a 8.33a 8.59b 2.90bc 3.67a 40.63a
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greenhouse. We observed earliest runner development time 
(36.67 days) and rooting time (10 days) in the 0.5 mg/L 
AgNPs treatment. In the control treatments runners formed 
late (45.67 days) and rooting was early (5-days) (Table 6). 
Besides, the rooting rate (100%), number of runner (8.00 
and 8.33 runners), number of leaves per runner (3.67 
leaves), total chlorophyll (40.37 and 40.63 nmol/cm2) at 
0.5 mg/L AgNPs (derived from 10-day and 15-day root-
ing) were higher than those in others (Table 6 and Fig. 5). 
Moreover, the runner height (11.21 cm) and runner fresh 
weight (3.55 g) derived from 0.5 mg/L AgNPs (10-day 
rooting) were the highest compared to others. From the 
above results, in vitro strawberry plantlets derived from 
0.5 mg/L AgNPs (10-day rooting) showed good growth 
and development under in vitro and ex vitro conditions as 
well as the ability to runner formation. Furthermore, run-
ners derived from 0.5 mg/L AgNPs treatment showed good 
growth and development as well as the ability to flower 
and fruit after 60 days of planting. Flowers and fruits did 
not have any deformations and they were similar to those 
obtained from control treatment. 

Conclusion

This study showed that the addition of AgNPs in culture 
medium significantly improved, explant disinfection, shoot 
multiplication, plantlets quality as well as runner forma-
tion of strawberry in the greenhouse. In addition, AgNPs 
was effective in reducing ethylene gas accumulation dur-
ing shoot multiplication and rooting stages.
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